找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2185|回复: 5
打印 上一主题 下一主题
收起左侧

问一个数学竞赛题-我不会做

[复制链接]

1

主题

4

帖子

61

积分

跳转到指定楼层
楼主
发表于 2005-5-19 01:14:19 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

x是3位数的正整数。这里把x表示成abc. 令 f(x) = max(a,b,c) - min(a, b, c).www.ddhw.com
 
例如,f(125)=f(251)=f(152)=4, f(101)=f(110)=1.www.ddhw.com
 
求 f(100) + f(101) + .... + f(998) + f(999)www.ddhw.com
 
我不会写求和号。也就是说求 f(x) 从100到999的和。www.ddhw.com
 
www.ddhw.com

 
回复

使用道具 举报

5

主题

155

帖子

1115

积分

沙发
发表于 2005-5-19 05:23:27 | 只看该作者

回复:问一个数学竞赛题-我不会做


f(abc)=(|a-b|+|b-c|+|c-a|)/2
www.ddhw.com

 
回复 支持 反对

使用道具 举报

1

主题

4

帖子

61

积分

板凳
 楼主| 发表于 2005-5-19 17:43:12 | 只看该作者

回复:回复:问一个数学竞赛题-我不会做


谢谢乱弹,果然这里能人不少。我觉得最难得是求和。要是有人给个方法更好。我是这样想的:
 
For 100<=x<=999, if I can find all f(x) = k, I will be able to get the sum
 
I think I should find the following
 www.ddhw.com
A. number of 3 digit integers using digits 0, 1, 2, ...., k, where digit 0 and k must be used. Call it N0(k)
B. number of 3 digit integers using digits 1, 2, 3, ...., k-1, where digit 1 and k-1 must be used, if (k>1). Call it N1(k)
...
C. number of 3 digit integers using digits 9-k, 9-k+1, 9-k+2, ...., 9, where digit 9-k and 9 must be used, if (k!=9). This should be the same as N1(k)
 
For example, N0(1) = 3 (100, 110, 101), N1(1)=6 (121, 122, 112, 212, 211, 221)
 www.ddhw.com
then the solution is sum of k(N0(k)+(9-k)N1(k)) for k=0 to 9.
 
My question:
 
0. Is this analyse correct?
1. Is there a better way to do this?
2. The above A, B, C are all permutation problems, is there a general terms to get the solutions for N0(k) and N1(k) for k=0, 1, ..., 9? I tried, I couldn't get a good formula
 
My analyses may be wrong above. You are welcomed to point it out.
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

1

主题

4

帖子

61

积分

地板
 楼主| 发表于 2005-5-19 21:45:18 | 只看该作者

Make a correction


I made a mistake here
 
I wrote
 
B. number of 3 digit integers using digits 1, 2, 3, ...., k-1, where digit 1 and k-1 must be used, if (k>1). Call it N1(k)
 
This should be
 
B. number of 3 digit integers using digits 1, 2, 3, ...., k+1, where digit 1 and k+1 must be used, if (k<9). Call it N1(k)
 
I am still waitin....
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

5#
发表于 2005-5-20 01:44:58 | 只看该作者

回复:回复:回复:问一个数学竞赛题-我不会做


Sorry, actually I did not try this problem carefully. I just guessed that the formula I wrote might be a point. With that, we remove the max and min operators and  transform the problem into a combinatorial problem.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

1

主题

4

帖子

61

积分

6#
 楼主| 发表于 2005-5-20 19:38:33 | 只看该作者

Thanks


I thought this last night. I think we can solve it this way.
 
sum{x=100 to 999}f(x) =
= sum{a=1 to 9} sum {b=0 to 9} sum {c=0 to 9} (|a-b|+|b-c|+|c-a|)/2
 www.ddhw.com
This can break into 3 terms, for one term
 
sum{a=1 to 9} sum {b=0 to 9} sum {c=0 to 9} |a-b|/2
= 10 sum{a=1 to 9} sum {b=0 to 9} |a-b|/2
= 5 sum{a=1 to 9} (sum {b=0 to a}(a-b) + sum {b=a+1 to 9}(b-a))
= 5  sum{a=1 to 9} (a(a+1)/2 + (9-a)(10-a)/2)
= 5  sum{a=1 to 9} (a**2 - 18a +90)
 
We can do the same for the other 2 terms. With this, we don't care about permutations. Thanks again.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved