找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2603|回复: 4
打印 上一主题 下一主题
收起左侧

a question from putnam competition

[复制链接]
achen 该用户已被删除
跳转到指定楼层
楼主
发表于 2004-12-6 00:15:46 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
提示: 作者被禁止或删除 内容自动屏蔽
回复

使用道具 举报

10

主题

271

帖子

1996

积分

沙发
发表于 2004-12-6 23:30:49 | 只看该作者

answer


It's essentially (m+n)^(m+n) > C(m+n, m) * m^m * n^n.
LHS is the total count of sampling (m+n) times from (m+n) objects with replacement.
RHS is the count by (1) seperate the (m+n) objects into two subsets of m and n objects, respectively
(2) sampling each subsets by the number of members of the subsets.
appearantly, LHS is much greater than RHS.
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

achen 该用户已被删除
板凳
 楼主| 发表于 2004-12-7 01:51:51 | 只看该作者
提示: 作者被禁止或删除 内容自动屏蔽
回复 支持 反对

使用道具 举报

10

主题

271

帖子

1996

积分

地板
发表于 2004-12-7 04:03:13 | 只看该作者

As explained,


this is a counting problem.  Left hand side is the total possible arrangements of m+n choices from m+n objects, with replacement.  Right hand side is just partial count, since it's more restricted.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

210

主题

3101

帖子

8万

积分

5#
发表于 2004-12-7 04:25:34 | 只看该作者

回复:a question from putnam competition


我想sean9991用的是非常smart的方法。我试着用笨办法做 --- 数学规纳法。

因n和m是完全对称的,故可固定其中之一(n),规纳法证明该式对另一变量(m)为任
意正整数成立即可。

re-write the original as:

(n+m)!/(n!m!)<[(n+m)^(n+m)]/[(n^n)(m^m)]

when m=1,
(n+1)!/(n!1!)<[(n+1)^(n+1)]/[(n^n)(1^1)] is true,
as it can be simplified to show: n+1<(n+1)[(n+1)/n]^nwww.ddhw.com

Assume: (n+k)!/(n!k!)<[(n+k)^(n+k)]/[(n^n)(k^k)] ......(1)

Obviously: [1+1/(n+k)]^(n+k)>(1+1/k)^k

which is combined with (1), we have:
(n+k)!/(n!k!)<[(n+k)^(n+k)]/[(n^n)(k^k)]
<[(n+k)^(n+k)][1+1/(n+k)]^(n+k)/[(n^n)(k^k)(1+1/k)^k]
=[(n+k+1)^(n+k)]/[(n^n)((k+1)^k)] .......(2)

Multiply the two sides of (2) by (n+k+1)/(k+1), and simplify, we got:

(n+k+1)!/[n!(k+1)!]<[(n+k+1)^(n+k+1)]/{(n^n)[(k+1)^(k+1)]}

Done.www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved