找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 1011|回复: 18
打印 上一主题 下一主题
收起左侧

天平平分真假币--This one is good[:-M][:-M]

[复制链接]

456

主题

1770

帖子

2万

积分

跳转到指定楼层
楼主
发表于 2006-9-7 09:08:56 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

有32枚外观完全一样的金币,其中2枚是假币,另外30枚是真币。两者的重量都不知,只知真币重量都相同,假币重量也相同,真币与假币的重量则不同,也不知真币较重还是假币较重。现有一架无砝码的天平,它只能测量置于左右两托盘中的物品孰重孰轻或者两者相等。限称四次,请问如何才能把这32枚金币分成重量相等的两堆。
www.ddhw.com

 
回复

使用道具 举报

0

主题

10

帖子

60

积分

沙发
发表于 2006-9-7 15:58:21 | 只看该作者

回复:天平平分真假币--This one is good[:-M][:-M]


解释起来比较麻烦,将金币分成4组, 每组8枚。称2组,相等的话就平分另外俩组,不相等就平分正在称的俩组。
但愿你还看得懂我写的。

将金币分成4组, 每组8枚: A, B, C, D

称A, B
如 A = B
将C, D 分成4组, 每组4枚: C1, C2, D1, D2

称C1, D1
如 C1 = D1
将C2, D2 分成4组, 每组2枚: C21, C22, D21, D22

称C21, D21
如 C21 = D21
将C22, D22 分成4组, 每组1枚: C221, C222, D221, D222

称C221, D221
如 C221 = D221
将A,C放在一堆, B,D放在一堆www.ddhw.com

如 C221<>D221
那么一定C222<>D222
将C221,D221放在一堆, C222,D222放在一堆, 再用其他补足。



 
回复 支持 反对

使用道具 举报

0

主题

2

帖子

12

积分

板凳
发表于 2006-9-7 17:33:12 | 只看该作者

回复:回复:天平平分真假币--This one is good[:-M][:-M]


将金币分成4, 每组8: A, B, C, Dwww.ddhw.com

A, B
A = B
C, D 分成4, 每组4: C1, C2, D1, D2
(
问题是:如果AB怎么办,如果只有一枚假币在AB中另外一枚假币在CD中,那么如何可以称四次就可以把32枚硬币分出两份重量相等的两堆呢?)www.ddhw.com


C1, D1
C1 = D1
C2, D2 分成4, 每组2: C21, C22, D21, D22www.ddhw.com

C21, D21
C21 = D21
C22, D22 分成4, 每组1: C221, C222, D221, D222www.ddhw.com

C221, D221
C221 = D221
A,C放在一堆, B,D放在一堆www.ddhw.com

C221<>D221
那么一定C222<>D222
C221,D221放在一堆, C222,D222放在一堆, 再用其他补足

www.ddhw.com

 
回复 支持 反对

使用道具 举报

128

主题

550

帖子

8036

积分

地板
发表于 2006-9-7 20:12:55 | 只看该作者

回复:天平平分真假币--This one is good[:-M][:-M]


Label each coin using binary digits, from 00000 to 11111.  Put all the coins with first digit = 0 on one side of the scale, and remaining coins on the other, if get equal weight, done, otherwise, repeat the process with the second digit...
If all the first 4 trials fail, then we know that the two fake coins differ in the last digit, and the 5th division according to the last digit must be successful, and we don't have to weigh them.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

456

主题

1770

帖子

2万

积分

5#
 楼主| 发表于 2006-9-8 08:30:36 | 只看该作者

High Hand[:-Q][:-Q][:-Q][@};-][@};-][@};-]


  High Hand




回复 支持 反对

使用道具 举报

456

主题

1770

帖子

2万

积分

6#
 楼主| 发表于 2006-9-8 08:47:16 | 只看该作者

这方法很妙[:-Q][:-Q][@};-][@};-][@};-]


  这方法很妙




回复 支持 反对

使用道具 举报

0

主题

2

帖子

12

积分

7#
发表于 2006-9-8 09:29:56 | 只看该作者

回复:我来试试


32等分为4组,A1~8, B1~8, C1~8, D1~8www.ddhw.com

 www.ddhw.com

1、称A组与B组,若相等www.ddhw.com

2、称A+CB+D,若相等,问题已解;若不相等,则假币必然同在C组或D组当中www.ddhw.com

3、称(C1234+D1234)与(C5678+D5678),若相等,问题已解;若不相等,(注:C1234代表C1,C2,C3,C4四枚币)www.ddhw.com

4、称(C1256+D1256)与(C3478+D3478),若相等,问题已解;若不相等,则题解为:(C1357+D1357+A组)与(C2468+D2468+B组)www.ddhw.com

(问题是:假设C1D1就是假币的话,那么到最后你的答案是(C1357+D1357+A组)与(C2468+D2468+B组)那么你还是把C1D1两个假币放在同一组,两个假币放在同一组的话两堆金币的重量肯定不相等)www.ddhw.com

 www.ddhw.com

1、称A组与B组,若不相等www.ddhw.com

2、称A+BC+D,若相等,问题已解;若不相等,则假币必然同在A组或B组当中www.ddhw.com

3、称(A1234+B1234)与(A5678+B5678),若相等,问题已解;若不相等,www.ddhw.com

4、称(A1256+B1256)与(A3478+B3478),若相等,问题已解;若不相等,则题解为:(A1357+B1357+C组)与(A24688+B2468+D组)



 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

8#
发表于 2006-9-10 10:32:37 | 只看该作者

I knew you meant EXPERT!


  I knew you meant EXPERT!




回复 支持 反对

使用道具 举报

1

主题

3

帖子

55

积分

9#
发表于 2006-9-10 20:38:23 | 只看该作者

回复:天平平分真假币--This one is good[:-M][:-M]


该问题的关键是要把两枚假币分到两堆金币中,一堆一个。明白这一点,问题就简单了。
第一次分,每边16个,若相等,你很lucky,假币每边一个,不用再量了。若不等,两个假币必在同一盘中,但是不知是轻还是重。
任意取轻的或者重的一边,先假定重的一边进行第二次分,分成8个,若相等,再量轻的一边(第三次称量),若也相等,你很幸运,虽不知假币是轻是重,中要把第二、三两次的左边放作一堆,右边作放一堆,也成了。
若第二次称量,左右不等,则假币重于真币。取重的一侧量第三次每边4个,若相等,则假币必定左右每边一个,只要把与其他的等分与左右两边就行。第三次若不等,取重侧分每边两个量第四次,若相等,则假币必定左右每边一个。若不等,两假币必在重盘中。
同样也适于假币情于真币的情况。www.ddhw.com
不知说清楚了没有,呵呵!
www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

10#
发表于 2006-9-12 06:56:37 | 只看该作者

The solution with pseudocode


First of all, divide all these 32 coins into four groups, say A1, A2,
A3, A4, each group has 8 coins.  Bottom line is, the two bad coins can
either be in two separate groups, or in a same group. And we will find
it out.

I believe the key is that you have to remember which side is heavier
across different weighs.

Weigh A2 and A3:
If A2 == A3 then: (1st time)

  It is possible that one of each bad coins is in one of these two
  groups, or none of the bad coins is in any of these two groups.

  Then weigh A1 and A4: (2nd time)

  if A1 == A4 :
     perfect, things are figured out. A1 + A2 == A3 + A4 (FIGURED OUT
     AT 2ND WEIGHS)www.ddhw.com

  MAIN PROCEDURE:
  if A1 > A4:
     then, both bad coins are in either A1 or A4:
     Now split A1 and A4 into four sub-gorups (A11, A12, A41 and A42),
     each group has 4 coins. Now weigh A42 + A12 against A41 + A11 (3rd time),

          if (A42 + A12 == A41 + A11):
              (perfect, FIGURED OUT AT 2ND WEIGHS)www.ddhw.com

          if (A42 + A12 > A41 + A11):
             then the two coins must be in either A12 or A41, because
             by switching the place of A11 and A42 didn't change the
             direction of the inequality, therefore neither A11 nor A42 has
             any bad coins.www.ddhw.com

             Now split A12 and A41 into four smaller groups (A121,
             A122, A411, A412), each has two coins. Now weigh A412 +
             A122 against A411 + A121:(4th time)
                     if (A412 + A122 > A411 + A121):
                        then the bad coins are both in either A122 or
                        A411 (the direction of inequality doesn't
                        change). Because now A122 and A411 only have
                        two coins each, simply split these two groups
                        in half and add the filtered out groups into
                        each half, you will get the result. (FIGURED
                        OUT AT 4th WEIGHS)www.ddhw.com

                     if (A412 + A122 == A411 + A121):
                        then problem solved (FIGURED OUT AT 4th
                        WEIGHS)
                     if (A412 + A122 < A411 and A121):
                        same as the first case, just now either the
                        A412 or A121 has both bad coins, now split
                        these two groups and add the filtered out
                        groups into each half. (FIGURED OUT AT 4th
                        WEIGHS)www.ddhw.com

           if (A42 + A12 < A41 + A11):
             then the two coins must be in either A42 or A11, follow
             the above procedures.www.ddhw.com

If A2 > A3 then:
  
   At this point, there are two possibilities:
  
   1. both bad coins can be in either A2 or A3
   2. one in A2 or A3 and one in A1 or A4

   Weigh A1 and A4:www.ddhw.com

         if (A1 > A4):
            Then you know the following possibilities:
            1. both A1 and A2 have one bad coin;
            2. or both A3 and A4 have one bad coin;
            Anyways, A1 + A3 == A2 + A4, problem solved (FIGURED OUT
            AT 2nd WEIGHS)www.ddhw.com

         if (A1 < A4):
            Then you know the following possibilities:
            1. both A1 and A3 have one bad coin;
            2. or both A2 and A4 have one bad coin;
            Anyways, A1 + A2 == A3 + A4, problem solved (2FIGURED OUT
            AT 2nd WEIGHS)
           
         if (A1 == A4):
            Then you know for sure both bad coins will be either A2 or
            A3.  Go to the text labled "MAIN PROCEDURE" and apply the
            same process on A2 and A3,

www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

3

帖子

18

积分

11#
发表于 2006-9-18 11:45:25 | 只看该作者

回复:天平平分真假币--简单的答案


每次分为4组,每组相同数目,任取其中两组,称之:
如果等重,则将另两组合在一起,再分成4组。。。
如果不等,就将这两组喝在一起,再分成4组。。。
 
如此4次,即得。其中原由,各位可自己考证
 
 


 
回复 支持 反对

使用道具 举报

0

主题

10

帖子

60

积分

12#
发表于 2006-9-19 15:07:24 | 只看该作者

回复:天平平分真假币--This one is good[:-M][:-M]


我不知道!www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

13#
发表于 2006-10-21 12:13:29 | 只看该作者

回复:天平平分真假币--This one is good[:-M][:-M]


上面的答案都不正确,我觉得这个题没有答案。


 
回复 支持 反对

使用道具 举报

0

主题

5

帖子

30

积分

14#
发表于 2006-11-20 11:07:00 | 只看该作者

回复:The solution with pseudocode


  Superman!!
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved