有没有什么地方像金牌老弟所说的“歪曲了原题的描述,误解了原题的描述,或者看错了原题的语句,或者自己对原题没有涉及的情况,进行自己的想象和假设”?有没有像金牌老弟所说的“太低极”的“失误”? 本贴由[yinyin]最后编辑于:2007-10-27 22:3:41 |
It is not correct. These 330 and 1820 outcomes are NOT equally likely outcomes in that the outcomes follow multinormial distribution. The probability of all 12 balls in the first hole is f(12,0,0,0,0)=[12!/12!]*(1/5)^12=(1/5)^12 The probability of another outcome like (4,2,2,2,2) is f(4,2,2,2,2)=[12!/4!2!2!2!2!]*(1/5)^12, which is much higher. With the aid of computer programming (the programm will be very short), we can solve Cotton Candy's problem based on the multinormial distribution. But this method is too complicated to calculate by hand. HF has provided a better mothod. Let's see how Yinyin will analyze this problem for us. Support Yinyin's effort! ![]() 本贴由[oldstudent]最后编辑于:2007-10-27 18:36:18 |
有人对棉mm的问题给出的答案为 C(11,4)/C(16/4)=330/1820=33/182。old兄指出了它的错误。得到这一解的思路是沿用古典概型中的计数再相除的方法,但它违反了古典概型的基本事件(只含一个结果的事件)须具有等可能性这一基本要求,导致错误的结论。下面一个简单的例子很能说明问题。 掷两颗规则的骰子,求所得点数之和不超过3的概率。 (1)错误解。两骰子点数之和可有 2、3、4、5、6、7、8、9、10、11、12 等十一种不同的可能结果,其中不超过3的仅两种,故所求概率为 2/11。其错误的关键在于:这十一种结果(每个结果等同于一个基本事件)出现的可能性不一样大(例如,出现7比出现2容易得多),因而不能将它们用作基本事件来构造古典概型。 (2)正确解。取 (1,1),(1,2),......,(1,6),(2,1),(2,2),......,(2,6),......,(6,6) 为结果,它们满足等可能性要求(因骰子是规则的,且一颗骰子出现某一点数并不影响另一骰子出现什么点数),一共有36个结果,其中点数之和不超过3的仅有(1,1),(1,2),(2,1)这三种。因此,按古典概型中事件概率的定义,所求事件的概率为 3/36=1/12。 |
Thank you Yinyin! I think there will be a lot of interesting topics related to this problem. For instance, 1) If each person continue buying boxes of cereals until all 5 games are collected, and N be the number of boxes each person has bought, How to calculate expected value and variance of N(see my question to Salmonfish)? 2) If the 5 games are not equally distributed, each game has different p, but p1+p2+p3+p4+p5=1. We can use multinormial distribution to solve the problem, but as you said, it is very complicated. Is there a easier way to solve this problem? Looking forward to your continuous discussion. |
very interesting and inspiring discussion, waiting for the follow-up. |
欢迎光临 珍珠湾ART (https://zzwav.com/) | Powered by Discuz! X3 |