找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 3897|回复: 10
打印 上一主题 下一主题
收起左侧

Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。

[复制链接]
跳转到指定楼层
楼主
发表于 2010-9-23 00:23:59 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

www.ddhw.com

原题见http://www.topchinesenews.com/readpost.aspx?topic_id=9&msg_id=8767&level_string=0&page=1www.ddhw.com

MS Word equation不能拷到脑坛上,不得不重新打,数学式子的表达就显得不规范。下面的分析和计算,是对还是不对,请朋友们评说指教。

 

***********************************************www.ddhw.com

 www.ddhw.com

    箱子里两个信封, 分别记为AB。从箱子中随机选取其一,内有1元钱的概率为(1/2)*(1/2) = 1/4 = 2-2, 10n元钱的概率为(1/2)(2-n+2-n-1) = 3*2-n-2, n = 1, 2, ……。不妨设取的是A,用X代表其中钱数,那么X是一个具有上述概率分布(简称分布)的离散型随机变量,其数学期望(简称期望)为 E(X) = 1*2-2 +10*(3/8) +100*(3/16) +1000*(3/32) + …… = 正无穷大。这就是说,这个随机变量的期望值是正无穷大,但任一观察值(即看到的钱数)是有限值。

 www.ddhw.com

       现在来考虑选取哪个信封以及换不换。决策的准则是比较两个信封中的钱数,选取较大者。若信封已打开,就用观察值去比较;若还没打开,就只好用其期望值(或条件期望值)去比较。当遇到正无穷大与有限值比,总认为前者大;而当两者都是正无穷大时,还得看它们的分布,若分布相同,就认为一样大(眼下还用不着考虑分布不同时的情况)。www.ddhw.com

 www.ddhw.com

    一开始,AB中未知钱数都具有相同的概率分布,故能不妨设抽的是A。打开看,记那钱数为x,有限值x是随机变量X的一个观察值。若是1元,当然要换;若不是1元,就应跟B中钱数去比较才能决定换不换。用Y代表A中钱数为x条件B中钱数。按题设,此时Y的值仅有两种可能:10x0.1xY条件分布为两点分布)。因B还没打开,故只能用B中钱数的条件期望值来比。那么这里所说的“条件”是什么呢?“条件” 就是随机事件(简称事件){X = x} 已发生。下面用贝叶斯(Bayes)公式 (实际上是由全概率公式推导贝叶斯公式时的中间形式) 来计算在事件{X = x}已发生的条件下B中钱数的条件期望值

 www.ddhw.com

       P(F)代表任一给定事件F的概率, 用记号 | 表示其后是条件,并记lg xi(即x = 10i)。在{X = x}已发生的条件下,条件概率

 www.ddhw.com

   P({Y = 0.1x}|{X = x}) = P({Y = 0.1x}&{X = x}) / [ P({Y = 0.1x}&{X = x}) + P({Y = 10x}&{X = x})]www.ddhw.com

                                       = 2-i / ( 2-i + 2-i-1)www.ddhw.com

                                       = 2/3

 

类似地,www.ddhw.com

 www.ddhw.com

   P({Y = 10x}|{X = x}) = P({Y = 10x}&{X = x}) / [ P({Y = 0.1x}&{X = x}) + P({Y = 10x}&{X = x})]www.ddhw.com

                                      = 2-i-1 / ( 2-i + 2-i-1)www.ddhw.com

                                      = 1/3

    www.ddhw.com

这样,条件期望

 www.ddhw.com

   E(Y|{X = x} ) = 0.1x*P({Y = 0.1x}|{X = x}) + 10x*P({Y = 10x}|{X = x})

                         = 0.1x*(2/3) +10x*(1/3) www.ddhw.com

                         = 51x/15 www.ddhw.com

                         = 3.4x 

 www.ddhw.com

由于Y的条件期望值比x大,这时就应该用AB

 www.ddhw.com

       换好后,在打开B之前,没人会马上问(或考虑)要不要换回A去(这不刚比完换过来的吗!)。打开B看,若钱数是10x,与A中已知钱数x(是观察值而不是期望值)比,当然不愿再换回A了;若钱数是0.1x,只好认倒霉(若再问要不要换回A, 那是必定要换回去的)。无论哪种情况,AB都已打开,钱数一目了然,过程到此结束。哪会有什么“换来换去”的情况出现呢?www.ddhw.com

 www.ddhw.com

    现在再回过头来看原题中提出的问题“那么为什么我们不一开始就选择另外那个信封呢?” 所谓“一开始”,是指两个信封都没打开时。这时只能比期望值,两者钱数期望值相同(分布也相同),好坏一样,选哪个都行。所以说“不妨取A”。题中所说的“换一个信封显然更”是以B条件期望值3.4xA观察x相比 (而不是以B期望值跟A期望值相比) 之下的结论,怎么能用于“一开始”呢!构题者有意无意地在这里把概念B条件期望偷换成了B期望”, 把“A观察值”偷换成了“A期望值”,误导解题者。



 www.ddhw.com

 

  本贴由[冷眼看戏的Lili]最后编辑于:2010-9-22 19:29:14  

回复

使用道具 举报

3376

主题

5929

帖子

16万

积分

沙发
发表于 2010-9-23 01:44:57 | 只看该作者

回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


Lili MM是位高手呀。回头慢慢得仔细研读,不知道能不能看得懂。


 
回复 支持 反对

使用道具 举报

5

主题

184

帖子

1289

积分

板凳
发表于 2010-9-23 02:52:06 | 只看该作者

回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


您的推理比我严谨, 不得不佩服.  zzwave.com  我需要好好体会一下, 特别是关于条件期望值.
 
按照我的理解, 我们的分歧还是在:
1. 我认为信封里的钱数为有限值是必然事件, 与打不打开没关系. 您认为打开前后条件是不一样的. 因此,
2. 我认为信封A和信封B是具有对等条件的, "换一个更好"是伪命题. 您认为打开一个就不对等了.
 
看看我的理解对吗? 不急于讨论. 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

128

主题

550

帖子

8036

积分

地板
发表于 2010-9-23 05:09:57 | 只看该作者

回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


<<题中所说的“换一个信封显然更”是以B条件期望值3.4xA观察x相比 (而不是以B期望值跟A期望值相比) 之下的结论,怎么能用于“一开始”呢!构题者有意无意地在这里把概念B条件期望偷换成了B期望”, 把“A观察值”偷换成了“A期望值”,误导解题者。>>www.ddhw.com
 
 www.ddhw.com
Let's  make the comparison more symmetrical, and avoid the difference between the "observed value" and "expected value", as you put it.
 www.ddhw.com
Suppose you and I play the game, your strategy is always take the envelop you are given, and my stratgy is always taking the other envelop, and the game is repeated again and again...
 www.ddhw.com
Suppose there are boxes labeled with 1,10,100,1000,....,  if you open your envelop, and find x bucks in it, you deposit it in the box labeled with x, and I should get either 0.1x bucks or 10x bucks, and I will also deposit it into the same box.
 www.ddhw.com
Now, for an box labeled x, after many many many times of the repeated game, let's calculate the average amount you gain each time you deposit to the box -- this is trivial, it is x.  The average amount I gain, as you calculated, tends to 3.4x.
 www.ddhw.com
So, in the end, for this box, when enough number of games are played, I will gain more than you -- can I claim that my strategy beats yours on this box?
 www.ddhw.com
and then, since for every single box, my strategy beats yours, can I claim that my strategy beats yours?
 www.ddhw.com
 


 www.ddhw.com

 

  本贴由[HF:]最后编辑于:2010-9-22 21:12:6  

回复 支持 反对

使用道具 举报

5#
 楼主| 发表于 2010-9-23 08:05:49 | 只看该作者

回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


www.ddhw.com
俺的回帖只是遵守原题中以比较期望值与观察值的大小来决策的准则,找出题述中的推理错误--概念偷换,并没论及题中决策准则的合理性和可靠性。您的帖子好像也是去质疑比较期望值与观察值的大小的决策准则。事实上,因为题中的概率分布过于“怪异”,其期望值为正无穷大但任何观察值均有限,这种质疑可以更简单化。例如,考虑随机抽取一个信封,内有2n元钱的概率为2-n, n=1, 2, ...... 打开看后,问要不要重抽。同样因为其期望值是正无穷大而已抽到的总是有限值而觉得应该重抽。那当然就有人会问“既然如此,何不如第一次不抽,直接抽第二次?......”这就是说,在期望值是无穷的情况下,按期望值(包括条件期望值,它也往往被“带”大了)来决策是不可靠的。好在在现实生活中一般不会有这样期望值为正无穷大的实际问题,它只是在理论上探讨探讨而已。
在Hu兄问题中,要是在独立地重复好多次抽取信封时,您总是后拿,钱的总数也不见得一定比俺多,因为您只是觉得期望比俺多,但实际观察值就不见得了。
 
俺对Hu大哥原帖的答复中的计算若有什么算错的地方,请予指正。


 www.ddhw.com

 

  本贴由[冷眼看戏的Lili]最后编辑于:2010-9-23 3:14:28  

回复 支持 反对

使用道具 举报

128

主题

550

帖子

8036

积分

6#
发表于 2010-9-24 02:51:06 | 只看该作者

回复:回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。



您的帖子好像也是去质疑比较期望值与观察值的大小的决策准则。
No. I was not convinced that the comparison between expected value and observed value leads to the paradox. So I came up with another version, which is essentially the same as the original one, but without the comparison between "expected" and " observed". If your argument worked well against the original version, then it should also works equally well against my version -- but it does not seem to be the case.
在Hu兄问题中,要是在独立地重复好多次抽取信封时,您总是后拿,钱的总数也不见得一定比俺多,因为您只是觉得期望比俺多,但实际观察值就不见得了
For each box, the expectation of my strategy (switching) IS indeed larger than that of yours(staying)-- this has been theoretically proved by YOU. Of cause, at any time the relative rank of the "observed" values can go either way, but what we care is the expectation, right?

 www.ddhw.com

 

  本贴由[HF:]最后编辑于:2010-9-23 20:34:43  

回复 支持 反对

使用道具 举报

7#
 楼主| 发表于 2010-9-25 10:54:28 | 只看该作者

回复:回复:回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


在俺对Hu大哥转贴的原题的解答中,是遵循原题的决策准则,来指出题中所谓的“矛盾”是推理错误引起的,纠正错误后就决不会造成“换来换去”没完没了的局面。至于那决策准则的合理性和可靠性,并无论及。实际上,用期望值(在没有观察值的情况下,不得已而为之)去跟观察值相比大小而作出的决策是不可靠的,因为期望值是正无穷大而观察值总是有限,这时,在{X = x}的条件下另一信封中钱数Y的条件期望E(Y|{X = x} )也往往被“带”大了。“带”大了多少,则依赖于题中两个信封中钱数是如何“搭配”的。眼下的题中是3.4倍。调整题中搭配数据,就能得到别的倍数。其实,这倍数对决策是没什么意义的。
那3.4x是按题中所给数据算出的。有问题吗?但您说的“The average amount I gain, as you calculated, tends to 3.4x.”中,“The (观察值的)average amount tends to 3.4x”就值得推敲了。什么叫“tend”?在概率论和测度论中有好几种不同的收敛概念。就拿几种大数定律来说吧,用的是依概率收敛依概率1收敛,而且是在期望值存在且有限的约束条件下,有的甚至还要求方差有限,才成立。所以在本题中,认为观察值的平均数应“趋于”条件期望值的理论根据还有待深入讨论。
现在,俺从另一个角度来看您的问题“I will gain more than you -- can I claim that my strategy beats yours on this box?”。回答是:No(不能)。理由是:对两个发散的非负无穷级数,按对应项来比大小是毫无意义的,因为比较结果是依赖于这所谓对应项是如何配对而来的。举例来看,两个无穷级数一模一样,其第n项为2nn=1,2,... 。但若把第二个级数各项往后错(stagger)一项(即开头添一项0),再来逐项相比,第一个级数的每项(除了第一项,但它也是大)都是第二个级数的“对应”项的两倍。若错两项呢,就是四倍了。在原题中,两个信封中钱数的搭配也有类似此例的情况,只是把它随机化了(显得更复杂了),把E(Y|{X = x} )跟x来配对比较,于是就有了个3.4倍。
www.ddhw.com

 
回复 支持 反对

使用道具 举报

128

主题

550

帖子

8036

积分

8#
发表于 2010-9-25 18:46:32 | 只看该作者

回复:回复:回复:回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


那3.4x是按题中所给数据算出的。有问题吗?但您说的“The average amount I gain, as you calculated, tends to 3.4x.”中,“The (观察值的)average amount tends to 3.4x”就值得推敲了。什么叫“tend”?在概率论和测度论中有好几种不同的收敛概念。就拿几种大数定律来说吧,用的是依概率收敛依概率1收敛,而且是在期望值存在且有限的约束条件下,有的甚至还要求方差有限,才成立。所以在本题中,认为观察值的平均数应“趋于”条件期望值的理论根据还有待深入讨论。
 www.ddhw.com
For a fixed box, both expectation and variance of the deposits are finite, so LLN applies. Sorry for bringing the "average" and "tends to" terms, which complicate the arguments. Let's keep it simple: for each box labeled with x, the expectation of each of my deposit is 3.4x, and that of yours is x, so we can conclude that my strategy beats yours on this box, agree?
And here, it is expectation against expectation.



 www.ddhw.com

 

  本贴由[HF:]最后编辑于:2010-9-25 10:50:11  

回复 支持 反对

使用道具 举报

128

主题

550

帖子

8036

积分

9#
发表于 2010-9-25 19:40:34 | 只看该作者

回复:回复:回复:回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


在原题中,两个信封中钱数的搭配也有类似此例的情况,只是把它随机化了(显得更复杂了),把E(Y|{X = x} )跟x来配对比较,于是就有了个3.4倍。
 www.ddhw.com
Yes, that is what happens in both the original version and my version. Nevertheless, it is still odd that, on the one hand, the two envelops are symmetrical, so intuitively, it should not matter whether or not you switch, on the other hand, it can be "reasonably" concluded that switching beats staying for each box.
 www.ddhw.com
My explanation was: when you condition on the first envelop (or deposit to a box according to the amount in the  first envelop in my version), the two envelops are not "symmetrical" any more, i.e., although the two envelops are symmetrical, the rule of game (conditioning on amount in the first envelop) is not symmetrical, therefore, it is no surprise, the result is not symmetrical: one strategy beats another.
 
I was statisfied with this explanation until I realized that  Fields medallists like Terrance Tao and Tim Gowers took the trouble to get involved in the discussion of such a problem,  there must be something I missed.www.ddhw.com
 

www.ddhw.com

 

  本贴由[HF:]最后编辑于:2010-9-25 12:27:5  

回复 支持 反对

使用道具 举报

10#
 楼主| 发表于 2010-9-25 22:03:11 | 只看该作者

回复:回复:回复:回复:回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


俺觉得,您说的局部比较(在一定搭配下,专注于某一截片上),会有好坏的感觉。但总体上还是对称的,只是“把损失(或,不利)的风险推到无穷远”去了(那损失可是无穷大啊)。若用截尾法,以截尾后的有限级数来替代无穷级数,巨大的损失(大到足以抵消此前的所有得益)将出现在截尾处。进而考虑截尾点趋于无穷时的极限状态,就能会意“把损失的风险推到无穷远”。俺另一个帖子(http://www.topchinesenews.com/readpost.aspx?topic_id=9&msg_id=8768&level_string=0&page=1)也是来描写“把损失的风险推到无穷远”的情况的。
谢谢给出连接,有时间再细读。
www.ddhw.com

 
回复 支持 反对

使用道具 举报

11#
 楼主| 发表于 2010-9-25 22:20:34 | 只看该作者

回复:回复:回复:回复:回复:回复:Hu大哥“有趣而费解的题: 到底该换还是不该换?”一题的解答。


俺想,局限于这一固定的盒子,是可分好坏的。但综观所有无穷多个盒子(当x未知时,只能是“综观”),这好坏的结论又是不可靠的。这就像上面俺举的“第n项(可理解为第n个盒子)为2n的例子。错过(平移)一项再逐项相比,就会有与前不同的结果,但实际上还是那两个完全相同的非负无穷级数。
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved