找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 1562|回复: 5
打印 上一主题 下一主题
收起左侧

棉mm题的一种“解法”对不对.

[复制链接]

115

主题

1467

帖子

1万

积分

跳转到指定楼层
楼主
发表于 2007-10-27 22:31:28 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

棉mm题可以等价地表述如下:www.ddhw.com
12个不可区分的球随机地放入5个可区分的足够大的洞,5个洞都有球的概率为多少?
这里,“随机地”的意思是:每个球进各个洞的可能性都一样大,即1/5,且各球进哪个洞是相互独立的。
 
yinyin两天前新贴的“一个铺垫的题--为理解棉mm的题及其正确解与不正确解”已由oldstudent兄解决,yinyin补作了分析解释。(见http://www.topchinesenews.com/listo.aspx?topic_id=9&msg_id=7802&level_string=0&page=1 )
 www.ddhw.com
基于这个铺垫的题的结果,来看看我们能否按以下方法得到棉mm题的答案:
(1)这12个球放入那5个洞共有 C(16,4)=1820 种不同放法(或称分布)。
(2)“5个洞都有球”有多少种不同的放法?我们可以这样来算:从这12个球中先拿出5个球,在每个洞内放各放一个“垫底”(这做法就有1种,因球是不可区分的),然后考虑将剩下的7个球放入5个洞中有多少种不同的放法。用与(1)相同的想法,可得答数为 C(11,4)=330。因此,按计数技术中的乘法规则(multiplication rule),要使“5个洞都有球”,共有 1X330=330种放法。
于是,有的书上或网站上就认为上述棉mm题中所问的概率就是330/1820=33/182。
 
朋友们都来想想,这样的思路和答案对不对。若对,为什么对?若错,又为什么错?
www.ddhw.com

 
回复

使用道具 举报

115

主题

1467

帖子

1万

积分

沙发
 楼主| 发表于 2007-10-27 22:56:28 | 只看该作者

欢迎奥数金牌参加理性讨论,也欢迎对问题的表述批评指正。


有没有什么地方像金牌老弟所说的“歪曲了原题的描述误解了原题的描述,或者看错了原题的语句,或者自己对原题没有涉及的情况,进行自己的想象和假设”?有没有像金牌老弟所说的“太低极”的“失误”?


 www.ddhw.com

 

  本贴由[yinyin]最后编辑于:2007-10-27 22:3:41  

回复 支持 反对

使用道具 举报

1

主题

22

帖子

169

积分

板凳
发表于 2007-10-28 02:10:10 | 只看该作者

回复:棉mm题的一种“解法”对不对.


It is not correct.
These 330 and 1820 outcomes are NOT equally likely outcomes in that the outcomes follow multinormial distribution.
The probability of all 12 balls in the first hole is f(12,0,0,0,0)=[12!/12!]*(1/5)^12=(1/5)^12
The probability of another outcome like (4,2,2,2,2) is
f(4,2,2,2,2)=[12!/4!2!2!2!2!]*(1/5)^12, which is much higher.www.ddhw.com
With the aid of computer programming (the programm will be very short), we can solve Cotton Candy's problem based on the multinormial distribution. But this method is too complicated to calculate by hand.
HF has provided a better mothod. Let's see how Yinyin will analyze this problem for us. Support Yinyin's effort!
 


 www.ddhw.com

 

  本贴由[oldstudent]最后编辑于:2007-10-27 18:36:18  

回复 支持 反对

使用道具 举报

115

主题

1467

帖子

1万

积分

地板
 楼主| 发表于 2007-10-30 20:58:20 | 只看该作者

[:-Q][:-Q][:-Q]


有人对棉mm的问题给出的答案为 C(11,4)/C(16/4)=330/1820=33/182。old兄指出了它的错误。得到这一解的思路是沿用古典概型中的计数再相除的方法,但它违反了古典概型的基本事件(只含一个结果的事件)须具有等可能性这一基本要求,导致错误的结论。下面一个简单的例子很能说明问题。
 
掷两颗规则的骰子,求所得点数之和不超过3的概率。www.ddhw.com
(1)错误解。两骰子点数之和可有 2、3、4、5、6、7、8、9、10、11、12 等十一种不同的可能结果,其中不超过3的仅两种,故所求概率为 2/11。其错误的关键在于:这十一种结果(每个结果等同于一个基本事件)出现的可能性不一样大(例如,出现7比出现2容易得多),因而不能将它们用作基本事件来构造古典概型。
(2)正确解。取 (1,1),(1,2),......,(1,6),(2,1),(2,2),......,(2,6),......,(6,6) 为结果,它们满足等可能性要求(因骰子是规则的,且一颗骰子出现某一点数并不影响另一骰子出现什么点数),一共有36个结果,其中点数之和不超过3的仅有(1,1),(1,2),(2,1)这三种。因此,按古典概型中事件概率的定义,所求事件的概率为 3/36=1/12
www.ddhw.com

 
回复 支持 反对

使用道具 举报

1

主题

22

帖子

169

积分

5#
发表于 2007-10-31 03:08:40 | 只看该作者

回复:[:-Q][:-Q][:-Q]


Thank you Yinyin!
I think there will be a lot of interesting topics related to this problem. For instance,
1) If each person continue buying boxes of cereals until all 5 games are collected, and N be the number of boxes each person has bought,
How to calculate expected value and variance of N(see my question to Salmonfish)?
2) If the 5 games are not equally distributed, each game has different p, but p1+p2+p3+p4+p5=1.
We can use multinormial distribution to solve the problem, but as you said, it is very complicated. Is there a easier way to solve this problem?
Looking forward to your continuous discussion.

 
回复 支持 反对

使用道具 举报

614

主题

9189

帖子

14万

积分

6#
发表于 2007-11-1 23:18:42 | 只看该作者

patiently waiting


very interesting and inspiring discussion, waiting for the follow-up. 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved