找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 1473|回复: 5
打印 上一主题 下一主题
收起左侧

Prove or disprove

[复制链接]

105

主题

381

帖子

6171

积分

跳转到指定楼层
楼主
发表于 2005-9-13 17:26:30 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

that you can find some points on the plane as vertices of concave polygons such that
 www.ddhw.com
all the polygons have exactly two inner angles with degree > 180. 
 
Note: This question is from an older question.
 
It is easy to do for exactly one inner angles with degree > 180.  When the number is bigger than one, it may not have solution.
 
BTW, you can alway draw a concave polygon of n vertices (n>3) with n-3 inner angles of degree > 180. 
www.ddhw.com

 
回复

使用道具 举报

5

主题

155

帖子

1115

积分

沙发
发表于 2005-9-13 19:24:26 | 只看该作者

disprove


I can disprove it but the current version is not simple: I need three cases.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

板凳
发表于 2005-9-13 19:47:15 | 只看该作者

回复:disprove


I thoutght it was not hard to disprove. Of course I have not thought about all the details:
 
First we need to have at least three interior points. (Your problem below.) And we know we always have at least three exterior points (in the convex hull). Then we can "concave in" from three different gaps of the exterior. (Probably need more argument about how to do this.) Each gap would produce at least one concave angle. 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

地板
发表于 2005-9-13 20:04:03 | 只看该作者

Yes. Not very hard. My three cases


 
 
(1) The convex hull of the inner points is colinear.  (Disprove by my problem below)
 
(2) The convex hull of the inner points is a triangle.
 
(Disprove by fzy's idea: concave in.  )
 
(3) The convex hull of the inner points is a polygon of more than three vertices. www.ddhw.com
 
(The inner points form a polygon P with at least four angles<180. Break one (some) edge of  P, connect it with outer points smartly, got a new polygon Q. At least two inner angles of <180 of P become outer angles of Q; besides, the connection of P and outer points produce another outer angle <180. )
 
  (2) and (3) can be combined and proved using fzy's idea. It is tedious to write down all details.www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

5#
发表于 2005-9-13 20:50:31 | 只看该作者

For cases (2) and (3)(图)


www.ddhw.com
 
Basically, if we do not allow three points colinear, we can find the above picture, such that all other points are in the blue region. All points except B form a polygon P with EM and MD being two edges.  Replace curve AMC with ABC, we get a polygon we need.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

6#
发表于 2005-9-14 00:52:53 | 只看该作者

When allowing three points colinear


It is a bit complicated (need to explain more carefully how to divide points). I incorrectly guessed the answer to the original problem is yes.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved