找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 3460|回复: 9
打印 上一主题 下一主题
收起左侧

How to explain?

[复制链接]
y

1

主题

38

帖子

265

积分

跳转到指定楼层
楼主
发表于 2005-2-21 20:40:19 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

I try to teach my daughter to solve some equations with absolute value signs, such as
 
|x-1| + |2x+1| = 12
 
We can break it into x-1+2x+1=12 and -(x-1)-(2x+1)=12.
 
How can I explain to her that she cannot use
 
x-1-(2x+1)=12 or -(x-1)+2x+1=12 to get the answers?
 
 
www.ddhw.com

 
回复

使用道具 举报

1177

主题

2775

帖子

6万

积分

沙发
发表于 2005-2-21 21:07:43 | 只看该作者

回复:How to explain?


考虑边界条件:
x-1 >=0    (x>=1)
2x+1 >= 0  (x>=-1/2)
 
所以,
 
if x < -1/2 then
    |x-1| + |2x+1| 变成 -(x-1) - (2x + 1)
 
if -1/2 <= x < 1www.ddhw.com
    |x-1| + |2x+1| 变成 -(x-1) + (2x + 1)
 
if x >= 1
    |x-1| + |2x+1| 变成 (x-1) + (2x + 1)
 
 



原贴:
文章来源: y 于 2005-2-21 12:40:19
标题:How to explain?www.ddhw.com


I try to teach my daughter to solve some equations with absolute value signs, such as
 
|x-1| + |2x+1| = 12
 
We can break it into x-1+2x+1=12 and -(x-1)-(2x+1)=12.
 
How can I explain to her that she cannot use
 
x-1-(2x+1)=12 or -(x-1)+2x+1=12 to get the answers?
 
 


 

www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

板凳
发表于 2005-2-21 21:08:07 | 只看该作者

Your method seems wrong.


No offense.  In general, we break the | | sign case by case...
 
For example,
      Assume x-1>=0, 2x+1>=0, www.ddhw.com
      then we can break it to x-1+2x+1=12  and get x=4, which satisfies x-1>=0 and 2x+1>=0.. So x=4 is one solution.
 
      Assume x-1>=0 and 2x+1<0,
      then we can break it into x-1-(2x+1)=12 and get x=-14, which does not satisfies the two conditions.
 
Basically, we break the equation that contains the | | sign into four groups of equations and inequality.... Two of four have solutions and the other two do not....
 
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

y

1

主题

38

帖子

265

积分

地板
 楼主| 发表于 2005-2-22 23:18:06 | 只看该作者

Here is a general question


Thank both of you for your help.  In general, how many solutions exist for this type of equation?www.ddhw.com
 
|ax+b|+|cx+d|+...+|mx+n|=constant.www.ddhw.com
 
(It is better to use a1x..., but I cannot write 1 as subscript)www.ddhw.com
 
If the answer is bigger than 2, can you show me an example?  
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

5#
发表于 2005-2-22 23:31:07 | 只看该作者

回复:Here is a general question


solve each ax+b = 0, and get a sequece of numbers x1www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

6#
发表于 2005-2-23 01:13:58 | 只看该作者

Or even infinitely many. [:D)]


  Or even infinitely many.




回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

7#
发表于 2005-2-23 02:13:59 | 只看该作者

Or no solution


  Or no solution




回复 支持 反对

使用道具 举报

y

1

主题

38

帖子

265

积分

8#
 楼主| 发表于 2005-2-23 03:44:02 | 只看该作者

No solution


It is easy to find a case of no solution, such as |x|=-1 or |x-1|+|x|=0.www.ddhw.com

Could show an example for infinitely many solution and 3 solutionswww.ddhw.com

Thank you a lot. It seems so easy for you. But I just could not find them.www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

9#
发表于 2005-2-23 05:00:20 | 只看该作者

Infinitely many and three solutions


Infinitely many:
             |x+1|+|x-1|=2.   Obviously, [-1, 1] is the solution set.www.ddhw.com
 
 
Three solutions:
         Well, I do not have one example. Actually I do not think we can have one. Cause
     f(x)=|ax+b|+|cx+d|+...+|mx+n| is convex..... Therefore, if there are only a finite number of solutions, then there are 2, 1, or zero solutions.
 
Need to check again though.
 
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

10#
发表于 2005-2-23 20:18:04 | 只看该作者

you are right


it can only be 0, 1, 2, or infinite. And congratulations!
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved