找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 1333|回复: 6
打印 上一主题 下一主题
收起左侧

整数的幂还是整数

[复制链接]

158

主题

544

帖子

9110

积分

跳转到指定楼层
楼主
发表于 2005-12-7 19:52:41 | 只看该作者 回帖奖励 |正序浏览 |阅读模式

题目有点像流浪者

难度:++++
设r是正实数,并且满足对每个正整数N,N^r都是整数。证明r是整数。
www.ddhw.com

 
回复

使用道具 举报

5

主题

168

帖子

1193

积分

7#
发表于 2005-12-10 23:46:14 | 只看该作者

回复:回复:回复:回复:回复:整数的幂还是整数


www.ddhw.com
I think the following should work for general cases:
For any non negative integer k, we prove that r can not be between (k, k+1). Otherwise, suppose r is in (k, k+1), consider the Taylor's expansion:
(N+1)^r = N^r(1+r*1/N+1/2 r*(r-1)*1/N^2+...+O(1/N^(k+1)))
(N+2)^r = N^r(1+r*2/N+1/2 r*(r-1)*2^2/N^2+...+O(1/N^(k+1)))
...
(N+k)^r = N^r(1+r*k/N+1/2 r*(r-1)*k^2/N^2+...+O(1/N^(k+1)))
 www.ddhw.com
and by solving a system of linear equations, we can find integers A0,A1,A2,...Ak, s.t.
A0 N^r +A1 (N+1)^r +... Ak (N+k)^r = C* r* (r-1)...*(r-k)*N^(r-k) + O(1/N^(k+1-r))
and similar argument will leads to contradiction. (Notice that 0
 
 


 www.ddhw.com

 

  本贴由[QL]最后编辑于:2005-12-10 15:53:25  

回复 支持 反对

使用道具 举报

158

主题

544

帖子

9110

积分

6#
 楼主| 发表于 2005-12-10 22:21:48 | 只看该作者

回复:回复:回复:回复:整数的幂还是整数


Now you have proved "the fraction part of  N^(r-2) becomes dense", and hence r cannot be between 2 and 3. But it is not very easy to present the idea to any r. Will you try it?
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

168

帖子

1193

积分

5#
发表于 2005-12-10 18:18:48 | 只看该作者

回复:回复:回复:整数的幂还是整数


Another way to present the idea: r*(r-1)*N^(r-2) tends to infinity, yet the increment when N increase by 1, i.e. r*(r-1)*(N+1)^(r-2) -r*(r-1)*N^(r-2)  tends to 0. Hence there exists a subsequece, whose fraction part converges to 0.5.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

158

主题

544

帖子

9110

积分

地板
 楼主| 发表于 2005-12-10 17:04:40 | 只看该作者

回复:回复:整数的幂还是整数


Right idea but why "the fraction part of  N^(r-2) becomes dense "? It is not obvious, and actually not needed in the proof.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

168

帖子

1193

积分

板凳
发表于 2005-12-10 05:19:35 | 只看该作者

回复:整数的幂还是整数


Can the conclusion be make stronger? e.g.:
Is there a non integer r, such that both 2^r and 3^r are integers?
Is there a non integer r, such that for any rational number q, q^r is alo rational?www.ddhw.com
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

168

帖子

1193

积分

沙发
发表于 2005-12-10 05:10:58 | 只看该作者

回复:整数的幂还是整数


I will prove that r can not be between (2,3), similar idea can be used to prove that r can not be between (k,k+1) for any non negative integer k.
 
Suppose  2
(N+1)^r = N^r(1+r*1/N+1/2 r*(r-1)*1/N^2+O(1/N^3))
(N+2)^r = N^r(1+r*2/N+1/2 r*(r-1)*4/N^2+O(1/N^3))
so,
N^r-2*(N+1)^r+(N+2)^r = N^r (r*(r-1)*1/N^2+O(1/N^3)) = r*(r-1)*N^(r-2)+O(1/N^(3-r))
 www.ddhw.com
Notice that, O(1/N^(3-r)) can be arbitrarily small, but the fraction part of  N^(r-2) becomes dense as N goes to infinity, hence the set of the fraction part of  r*(r-1)*N^(r-2) for all positive integer N is dense in [0,1], specifically, there is a subsequence of N, such that the fraction part of    r*(r-1)*N^(r-2) approach 0.5. Hence N^r-2*(N+1)^r+(N+2)^r is not integer for some N.
Contradiction!
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved