找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 1365|回复: 22
打印 上一主题 下一主题
收起左侧

数学奥赛题

[复制链接]

53

主题

363

帖子

4139

积分

跳转到指定楼层
楼主
发表于 2005-5-6 22:06:45 | 只看该作者 回帖奖励 |正序浏览 |阅读模式

数学奥赛题

Difficulty: +++

设Z为全部整数的集,n为正整数,f为从Z^n到Z的函数, 并满足下列条件:

1)f(k,k,...,k) = k
2)设x,y属于Z^n,如果他们的所有座标都不同,那么f(x)和f(y)也不同www.ddhw.com

证明存在i, 1<=i<=n, 使得f(x1,...,xi,...,xn) = xi。

Both this problem and the Lighthouse problem are from the Iran IMO 2005 Team Selection Test. I was quite surprised to see good problems like these. (The CMO problems are too difficult and less interesting.) My privious experience with Iranian mathematics was in graduate school. There was an Iranian student (the only one I ever met), who failed every class he took, and was kicked out after one semister. :)

www.ddhw.com

 

回复

使用道具 举报

0

主题

1

帖子

6

积分

22#
发表于 2007-3-2 10:34:22 | 只看该作者

回复:数学奥赛题


  回复:数学奥赛题




回复 支持 反对

使用道具 举报

0

主题

4

帖子

24

积分

21#
发表于 2006-3-19 14:57:22 | 只看该作者

回复:数学奥赛题


  回复:数学奥赛题




回复 支持 反对

使用道具 举报

0

主题

4

帖子

24

积分

20#
发表于 2006-3-19 14:50:06 | 只看该作者

回复:数学奥赛题


  回复:数学奥赛题




回复 支持 反对

使用道具 举报

0

主题

4

帖子

24

积分

19#
发表于 2006-3-19 14:46:36 | 只看该作者

回复:数学奥赛题


  回复:数学奥赛题




回复 支持 反对

使用道具 举报

0

主题

4

帖子

24

积分

18#
发表于 2006-3-19 14:45:00 | 只看该作者

回复:数学奥赛题


怎么这么少??????????
www.ddhw.com

 
回复 支持 反对

使用道具 举报

210

主题

3101

帖子

8万

积分

17#
发表于 2006-1-1 18:36:03 | 只看该作者

不要气。有难的,也有简单的。欢迎多参与[@};-][@};-][@};-][@};-]


  不要气。有难的,也有简单的。欢迎多参与




回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

16#
发表于 2006-1-1 15:11:15 | 只看该作者

回复:数学奥赛题


气人
啊!
数学难
啊!!难在......
www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

15#
发表于 2005-11-20 13:30:34 | 只看该作者

回复:Do you have a couterexample?


,nkjhdjbjbhbjhsdnskjhgjxzjbjhgjhsbhbzkjbcjhgjhdgsjhkjgbjhcgskd?
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

14#
 楼主| 发表于 2005-5-9 21:46:48 | 只看该作者

回复:Do you have a couterexample?


I should say I don't know.  The original problem was Zk^n -> Zk. In that case it cannot be extended to Zk^infinity -> Zk, since a function satisfying the condition is then uniquely determined by an untra filter. I did not think carefully after I changed the problem to Z^n -> Z.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

13#
发表于 2005-5-9 20:53:50 | 只看该作者

Do you have a couterexample?


  Do you have a couterexample?




回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

12#
发表于 2005-5-9 20:53:05 | 只看该作者

[:>].I am glad it is the last one, as I am really


scared!  I am just joking, of course,  your problems are very welcomed, they at least let us 开 开 眼 界 。
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

11#
 楼主| 发表于 2005-5-9 18:44:16 | 只看该作者

I think so. But


it is not true if the domain becomes infinite dimensional (Z^infinity -> Z).
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

10#
 楼主| 发表于 2005-5-9 18:41:17 | 只看该作者

Perfect!


I'm sure you can make the Iranian national team.  This is the last problem in the test.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

9#
发表于 2005-5-8 04:14:07 | 只看该作者

Is it also true for R^n ?


  Is it also true for R^n ?




回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

8#
发表于 2005-5-7 17:44:33 | 只看该作者

回复:数学奥赛题


Claim1: f(x1,x2,...,xn)=xi  (i is not fixed)
As If f(x1,x2,...,xn)=k=f(k,k,...,k),www.ddhw.com
then from f(x1,x2,...,xn)=f(k,k,...,k), there at least is i, such that xi=k by condition 2 (otherwise f(x1,x2,...,xn)>
So f(x1,x2,...,xn)=xi
(转自:顶顶华闻 www.TopChineseNews.com )
We have to prove the i is independent from (x1,x2,...,xn).
For convenience, wlog, we may assume there are distinct integers y1,y2,...,yn, such that
f(y1,y2,...,yn)=y1 , then we must prove f(x1,...,xn)=x1 for any (x1,...,xn).www.ddhw.com
 
 let Z1={z1 in Z: f(z1,k,k,...k)=z1, for some k<>z1}
let Z2={z2 in Z: f(k,z2,z2,...,z2)=z2, for some k<>z2}
Clearly, the intersection of Z1 and Z2 is empty, otherwise , if z is a common integer
f(z,k,k,...,k)=z=f(l,z,z,...,z), for some k<>z, l<>z, contradicts with condition2.
Also we have: Z1UZ2=Z. (By Claim 1)www.ddhw.com
(转自:顶顶华闻 www.TopChineseNews.com )
Let A={(x,y) in Z^2: f(x,y,y,...,y)=x}
Let B={(x,y) in Z^2: f(x,y,y,...,y)=y}
Clearly the intersection of A and B is {(x,x):xin Z}
AUB=Z^2
(转自:顶顶华闻 www.TopChineseNews.com )
let z1 in Z1, z2 in Z2
If (z2,z1) is in A, f(z2,z1,z1,...,z1)=z2, then z2 is in Z1, contradiction.
If (z2,z1) is in B, f(z2,z1,z1,...,z1)=z1, then z1 is in Z2, contradictionwww.ddhw.com
So one of Z1, z2 is empty.
(转自:顶顶华闻 www.TopChineseNews.com )
If Z1 is empty:
f(z,k,k,...,k)=k for any z, k
then f(m,y1,y1,...,y1)=y1=f(y1,y2,...,yn) for any m<>y1, as y1,...,yn are distinct, contradiction with condition2.
 
So Z2 must be empty.
f(z,k,...,k)=z for any z,k.
 
If f(x1,x2,...,xn)=xi<>x1,www.ddhw.com
then f(xi, m,m,...,m)=xi=f(x1,x2,...,xn) for any m beyond {x1,x2,...,xn}, contradiction with condition2.
Therefore f(x1,x2,...,xn)=x1//
 
 
 
 
 www.ddhw.com
(转自:顶顶华闻 www.TopChineseNews.com )
(转自:顶顶华闻 www.TopChineseNews.com )
(转自:顶顶华闻 www.TopChineseNews.com )
(转自:顶顶华闻 www.TopChineseNews.com )
(转自:顶顶华闻 www.TopChineseNews(转自:顶顶华闻 www.TopChineseNews.com )
(转自:顶
We may prove it by induction on n
n=1 trivial
Define g(x2,x3...,xn)=f(x2,x2,...,xn)
then g(k,k,...,k)=f(k,k,...,k)=kwww.ddhw.com
if g(x2,x3,...,xn)=g(y2,y3,...,yn), then f(x2,x2,x3,...,xn)=f(y2,y2,y3,...,yn), thus at lease one pair of xi=yi, i>1
So g satisfy the two conditions, by assumption of induction, g(x2,...,xn)=xi for some fixed i>1. That is, f(x2,x2,...,xn)=xi, where i>1 is independent from x2,x3,...,xn.
顶华闻 www.TopChineseNews.com )


(转自:顶顶华闻 www.TopChineseNews.com )
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

7#
发表于 2005-5-7 05:46:29 | 只看该作者

回复:Guess you misunderstood me


Sorry. Thanks a lot. www.ddhw.com
I was really tired then.  Just had a short sleep. 
 
 
If  you saw I did not post her problems, please do. Thanks in advance.
 
For today's three problems, I see that one is solved. You may give the answer for that problem?  You may hold the answer for the other two.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

6#
 楼主| 发表于 2005-5-7 01:54:01 | 只看该作者

Guess you misunderstood me


What I mean is that I posted her problems to WXC, althought that should be your job.  And if YOU want to "post her problems to WXC" regularly, I will hold off answering her problems here.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

5#
发表于 2005-5-7 01:42:04 | 只看该作者

回复:回复:I guess so. [;)]


I just have some rough idea. When n=2, it can be proven very easy.  Then I want to go to n=4, n=8, ....,  This method probably work, but anyway, I guess I can not get it tonight, because I am very tired today.  Besides,  I do not like this idea very much,  because I think induction is like cheating sometimes.
 
Anyway, since this is a pretty good problem, you may hold your solution for some time. I think some people here and in WXC might work it out.  (Some people in WXC  often write solutions with many jumps, sigh...)
 
I will write down my proof (if I verify it) ASAP even though it is ugly.
 
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

地板
 楼主| 发表于 2005-5-6 23:22:17 | 只看该作者

回复:I guess so. [;)]


I did. Do you want to do it regularly? Then I will hold off my answeres here.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

板凳
发表于 2005-5-6 22:47:29 | 只看该作者

I guess so. [;)]


i should be independent of       (x1,..., xn).www.ddhw.com
 
Did you post your problems in WXC? Thank you.  
www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

沙发
发表于 2005-5-6 22:41:56 | 只看该作者

回复:数学奥赛题


If f(x1,x2,...,xn)=k=f(k,k,...,k)
Then from f(x1,x2,...,xn)=f(k,k,...,k), there at least is i, such that xi=k by condition 2 (otherwise f(x1,x2,...,xn)>
So f(x1,x2,...,xn)=xiwww.ddhw.com
 
Did I misunderstand your question?
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved