找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 3459|回复: 9
打印 上一主题 下一主题
收起左侧

How to explain?

[复制链接]
y

1

主题

38

帖子

265

积分

跳转到指定楼层
楼主
发表于 2005-2-21 20:40:19 | 只看该作者 回帖奖励 |正序浏览 |阅读模式

I try to teach my daughter to solve some equations with absolute value signs, such as
 
|x-1| + |2x+1| = 12
 
We can break it into x-1+2x+1=12 and -(x-1)-(2x+1)=12.
 
How can I explain to her that she cannot use
 
x-1-(2x+1)=12 or -(x-1)+2x+1=12 to get the answers?
 
 
www.ddhw.com

 
回复

使用道具 举报

53

主题

363

帖子

4139

积分

10#
发表于 2005-2-23 20:18:04 | 只看该作者

you are right


it can only be 0, 1, 2, or infinite. And congratulations!
www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

9#
发表于 2005-2-23 05:00:20 | 只看该作者

Infinitely many and three solutions


Infinitely many:
             |x+1|+|x-1|=2.   Obviously, [-1, 1] is the solution set.www.ddhw.com
 
 
Three solutions:
         Well, I do not have one example. Actually I do not think we can have one. Cause
     f(x)=|ax+b|+|cx+d|+...+|mx+n| is convex..... Therefore, if there are only a finite number of solutions, then there are 2, 1, or zero solutions.
 
Need to check again though.
 
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

y

1

主题

38

帖子

265

积分

8#
 楼主| 发表于 2005-2-23 03:44:02 | 只看该作者

No solution


It is easy to find a case of no solution, such as |x|=-1 or |x-1|+|x|=0.www.ddhw.com

Could show an example for infinitely many solution and 3 solutionswww.ddhw.com

Thank you a lot. It seems so easy for you. But I just could not find them.www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

7#
发表于 2005-2-23 02:13:59 | 只看该作者

Or no solution


  Or no solution




回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

6#
发表于 2005-2-23 01:13:58 | 只看该作者

Or even infinitely many. [:D)]


  Or even infinitely many.




回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

5#
发表于 2005-2-22 23:31:07 | 只看该作者

回复:Here is a general question


solve each ax+b = 0, and get a sequece of numbers x1www.ddhw.com

 
回复 支持 反对

使用道具 举报

y

1

主题

38

帖子

265

积分

地板
 楼主| 发表于 2005-2-22 23:18:06 | 只看该作者

Here is a general question


Thank both of you for your help.  In general, how many solutions exist for this type of equation?www.ddhw.com
 
|ax+b|+|cx+d|+...+|mx+n|=constant.www.ddhw.com
 
(It is better to use a1x..., but I cannot write 1 as subscript)www.ddhw.com
 
If the answer is bigger than 2, can you show me an example?  
www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

1

帖子

6

积分

板凳
发表于 2005-2-21 21:08:07 | 只看该作者

Your method seems wrong.


No offense.  In general, we break the | | sign case by case...
 
For example,
      Assume x-1>=0, 2x+1>=0, www.ddhw.com
      then we can break it to x-1+2x+1=12  and get x=4, which satisfies x-1>=0 and 2x+1>=0.. So x=4 is one solution.
 
      Assume x-1>=0 and 2x+1<0,
      then we can break it into x-1-(2x+1)=12 and get x=-14, which does not satisfies the two conditions.
 
Basically, we break the equation that contains the | | sign into four groups of equations and inequality.... Two of four have solutions and the other two do not....
 
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

1177

主题

2775

帖子

6万

积分

沙发
发表于 2005-2-21 21:07:43 | 只看该作者

回复:How to explain?


考虑边界条件:
x-1 >=0    (x>=1)
2x+1 >= 0  (x>=-1/2)
 
所以,
 
if x < -1/2 then
    |x-1| + |2x+1| 变成 -(x-1) - (2x + 1)
 
if -1/2 <= x < 1www.ddhw.com
    |x-1| + |2x+1| 变成 -(x-1) + (2x + 1)
 
if x >= 1
    |x-1| + |2x+1| 变成 (x-1) + (2x + 1)
 
 



原贴:
文章来源: y 于 2005-2-21 12:40:19
标题:How to explain?www.ddhw.com


I try to teach my daughter to solve some equations with absolute value signs, such as
 
|x-1| + |2x+1| = 12
 
We can break it into x-1+2x+1=12 and -(x-1)-(2x+1)=12.
 
How can I explain to her that she cannot use
 
x-1-(2x+1)=12 or -(x-1)+2x+1=12 to get the answers?
 
 


 

www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved