找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2012|回复: 4
打印 上一主题 下一主题
收起左侧

Area of an ellipse

[复制链接]

105

主题

381

帖子

6171

积分

跳转到指定楼层
楼主
发表于 2005-4-30 00:17:16 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

Find the area of the smallest ellipse that passes (1,0), (1,1), (-1,0) and (-1,1).
www.ddhw.com

 
回复

使用道具 举报

226

主题

1358

帖子

1万

积分

沙发
发表于 2005-4-30 01:25:09 | 只看该作者

回复:Area of an ellipse


pi ?
www.ddhw.com

 
回复 支持 反对

使用道具 举报

105

主题

381

帖子

6171

积分

板凳
 楼主| 发表于 2005-4-30 07:50:16 | 只看该作者

Sorry, I don't know. Pls show it.


  Sorry, I don't know. Pls show it.




回复 支持 反对

使用道具 举报

105

主题

381

帖子

6171

积分

地板
 楼主| 发表于 2005-5-1 00:54:40 | 只看该作者

right. Could you try another?


I verified it and it is pi.  There is a similar question which asking to find the area of min ellipse to enclose 2 circles with r=.5 and centers at (.5,0) and (-.5,0).   I'll try it when I have time.www.ddhw.com
 
Thank you very much for contributing so many questions and answers, and articles in this and other boards.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

5#
发表于 2005-5-1 07:56:03 | 只看该作者

回复:right. Could you try another?


Sorry, since I went to church for whole day, I did not have chance to show the calculation for your 1st problem.
Thanks for your encouragement!
 
The 2nd one:
 
Let the equation of the ellipse be
x^2/a^2+y^2/b^2=1
Consider the intersection between the ellipse and the circle
(x-0.5)^2 + y^2 =0.5^2 (i.e.  x^2 - x + y^2=0 )
Substituting  y^2=x-x^2 into the equation of the ellipse, we got
x^2/a^2+(x-x^2)/b^2=1.
Simplifying it, we have www.ddhw.com
(b^2-a^2)*x^2 +a^2*x-a^2*b^2=0
As the quadratic equation has a unique solution for x, we have
a^4-4(a^2-b^2)*a^2*b^2=0,
so, a^2=4b^4/(4b^2-1)
 
Since the area of the ellipse is ab(pi), we may just find the min value of a^2*b^2.
a^2*b^2=4b^6/(4b^2-1)
use derivative, we found
ab reaches the minimum when b=(3/8)^0.5, a=3/8^0.5
The min of the area is
3/8*sqrt3*pi
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved