找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 1140|回复: 5
打印 上一主题 下一主题
收起左侧

一个研究生班里有17人,

[复制链接]

226

主题

1358

帖子

1万

积分

跳转到指定楼层
楼主
发表于 2006-1-6 14:08:57 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

一个研究生班里有

17人,其中每个人都有4个朋友,证明存在两个互相不是朋友的人也没有共同的朋友。
www.ddhw.com

 
回复

使用道具 举报

10

主题

271

帖子

1996

积分

沙发
发表于 2006-1-6 19:02:34 | 只看该作者

回复:一个研究生班里有17人,


Let’s prove by contradiction.

 www.ddhw.com

Suppose the argument is not true, then for any two students, either they are friends or they have a common friend.  Consider any person, say A.  He/she has exactly 4 friends.  Let’s call them B1, B2, B3, and B4.  www.ddhw.com

 

Now, the remaining 17 – (4 + 1) = 12 students can’t be A’s friend directly, so they have to know A through Bi’s. 

 www.ddhw.com

Since each Bi can have three friends besides A, we are sure that www.ddhw.com

    • Bi and Bj are not friends, for i ≠ j, and i, j in {1, 2, 3, 4}. 
    • Bi and Bj have only one common friend A, for i ≠ j, and i, j in {1, 2, 3, 4}.   

      Both have to be true in order to get the 12 extra students in.

       www.ddhw.com

      Let Bi’s friends be A, Ci1, Ci2, Ci3, and let Si be the set of {Ci1, Ci2, Ci3}, for i in {1, 2, 3, 4}.  Consider Ci1 and B2’s common friend, he/she has to be someone from S2.  Therefore, any member in S1 will have exactly one friend from each of S2, S3, and S4.  www.ddhw.com

       www.ddhw.com

      Let’s assume C11 and C21 are friend, we claim C12 and C21 can’t be friend.  For otherwise, either C22 or C33 can’t have a common friend with B1 (only one of them can be friend of C13).  Therefore, members in 4 sets of Si’s can be partitioned into 3 equivalent classes of mutual friends.

       

      Just as above, if C11 and C21 are friend, C12 and C21 can’t be friend.  By the argument of equivalent classes above, they have no common friend.

www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

板凳
 楼主| 发表于 2006-1-7 02:53:10 | 只看该作者

Excellent![@};-][@};-]


  Excellent!




回复 支持 反对

使用道具 举报

0

主题

10

帖子

60

积分

地板
发表于 2006-1-7 09:25:36 | 只看该作者

Another solution


Use pigeonhole principle.

Represent each person as a point; if two points have friendship, connect them with red line, otherwise blue line.

1) There are totally 17*4/2=34 red lines.
2) There are totally (17 choose 3)=680 distinct triangles possibly formed by 17 points. Each triangle side is at most shared by 15 triangles.

Since 34*15 < 680, there are triangles with all blue sides. QED.www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

5#
 楼主| 发表于 2006-1-7 14:08:54 | 只看该作者

Very creative thinking, but


we have to prove that
there exists a blue edge AB provided that there is no  point C such that both AC and BC are red.www.ddhw.com
 
It seems to me that you have proved that there are many blue triangles, you still need disprove that all blue edges are also shared by other triangles with two red edges. Am I right?
www.ddhw.com

 
回复 支持 反对

使用道具 举报

0

主题

10

帖子

60

积分

6#
发表于 2006-1-9 05:54:31 | 只看该作者

You're right, I misread the question. [:>]


  You're right, I misread the question.




回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved