找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2416|回复: 7
打印 上一主题 下一主题
收起左侧

(1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k

[复制链接]

226

主题

1358

帖子

1万

积分

跳转到指定楼层
楼主
发表于 2005-2-18 21:03:04 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

使 得 k*2^n+1 对 每 一 个 正 整 数 n, 均 为 合 数 。
www.ddhw.com

 
回复

使用道具 举报

53

主题

363

帖子

4139

积分

沙发
发表于 2005-2-19 06:08:58 | 只看该作者

回复:(1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k


I have an idea. But there seems to be too much calculation to do during a competition. It is like this:www.ddhw.com

When k mod 3 != 0, 1/2 of k*2^n + 1 is divisible by 3. When k mod 5 != 0, 1/4 of them is divisible by 5. For 7, when k mod 7 != 3, 5, or 6, 1/3 of them is divisible by 7. Together they can cover about 5/6 of n. As we go through the prime numbers we should be able to find a group of numbers to cover all n. But I went up to 41 and was not yet successful. Might need to write a program to do it.

Probably some results in number theory can give a non constructive proof.

www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

板凳
 楼主| 发表于 2005-2-19 08:27:15 | 只看该作者

回复:回复:(1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k


Use the Chinese Remain Theorem. It IS very difficult, I doubt whether any people could solve it during the exam time.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

地板
发表于 2005-2-19 16:31:24 | 只看该作者

generated by my program


I ran my program for all prime numbers < 1000, and the only solutions I found are:

3 -> 1/2
5 -> 1/4
7 -> 1/3
13 -> 1/12
17 -> 1/8
241 ->1/24www.ddhw.com

and

3 -> 1/2
5 -> 1/4
7 -> 1/3
13 -> 1/12
17 -> 1/8
97 -> 1/48
257 -> 1/16

They both cover all n. Now we can use the Chinese remainder theorem to find the k with proper remainders. But that would take another program and I am in no mood to do that.

Are you telling me this is the only way to solve it? They must be crazy to give a problem like this! Even if you know what to do right away, the calculation would take several hours!
www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

5#
 楼主| 发表于 2005-2-20 03:40:02 | 只看该作者

Great job![@};-][@};-]


I agree with you that they must be crazy to give such difficult problem as a test question, and I am very sorry I did not read the solution carefully before I posted the problem. (So I am crazy too , although I am not on purpose.)  I thought a test problem would not be too difficult for people like you. You have done a great job. I don't understand how  people could give the solution without a computer.  I think through your hard and creative work, you could  master these skills in number theory better, hopefully you would not regret  having spent time on this problem.
 
Let me post their solution here,
Claim1: For any n, at least one of the following is true:
a)n=1(mod2)
b)n=1(mod3)
c)n=2(mod4)
d)n=4(mod8)
e)n=0(mod12)
f)n=8(mod24)
 
Pf: If n is odd, a) is true;
if 2 divides n but 4 not, then c) is true;
if 4 divides n but 8 not, then d) is true;www.ddhw.com
consider n=8m,
if m=3k, then e) is true
if m=3k+1,then f) is true
if m=3k+2, then b) is true//
 
Notice:
2^2=1(mod3)
2^3=1(mod7)
2^4=1(mod5)
2^8=1(mod17)
2^12=1(mod13)
2^24=1(mod 241)
 
Therefore
case a) n=1(mod2) or n=2m+1, then k*2^n+1=k*2^(2m+1)+1=2k*2^2m+1=2k+1(mod3)
Similarly, we have
case b) K*2^n+1=2k+1(mod7)www.ddhw.com
case c) k*2^n+1=4k+1(mod5)
case d) k*2^n+1=16k+1(mod17)
case e) k*2^n+1=k+1(mod13)
case f) k*2^n+1=256k+1(mod241)
 
 
Thus, if k satisfies all the followings, then k*2^n+1 is divisible by at least one of 3,7,5,17,13,241, therefore k*2^n+1 is not prime.
2k+1=0(mod3)
2k+1=0(mod7)
4k+1=0(mod5)
16k+1=0(mod17)
k+1=0(mod13)
256k+1=0(mod241)
 www.ddhw.com
But those congruences are equivalent to the followings:
k=1(mod3)
k=3(mod7)
k=1(mod5)
k=1(mod17)
k=-1(mod13)
k=16(mod241)
 
Since all 3,7,5,17,13,241 are primes, according to the Chinese Remainder Theorem, there must be solutions. Actually, k=1207426+5592405m
 
 
 
 
 
 
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

6#
发表于 2005-2-20 05:04:24 | 只看该作者

回复:Great job![@};-][@};-]


So if fully written out, the standard solution is shorter than mine. But I really do not see any one who is not a trained number theorist can come up with that solution in a reasonable amount of time.www.ddhw.com

Thanks for your concern. I am not upset. :) I no longer care about learning new skills in number theory or anywhere. Instead I do the problems as a way for brain excercise. :Dwww.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

7#
发表于 2005-2-20 13:12:49 | 只看该作者

回复:Great job![@};-][@};-]


The Chinese remainder Theorem is the first thing coming into my mind. However, it is too hard to be done in 90 minutes...   The first claim is hard to find out.....Although I was thinking about some similar things..........www.ddhw.com
 
Well, I think this kind of problem should still be welcomed...
www.ddhw.com

 
回复 支持 反对

使用道具 举报

226

主题

1358

帖子

1万

积分

8#
 楼主| 发表于 2005-2-20 20:20:41 | 只看该作者

回复:回复:Great job![@};-][@};-]


 Each USAMO has 5 question in various levels for 3.5 hours. I agree with both of you, I really doubt, any one could solve this problem during the exam time.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved