珍珠湾ART

标题: An 8th-grader number theory problem [打印本页]

作者: Xiangdang    时间: 2009-3-28 02:20
标题: An 8th-grader number theory problem

An 8th-grader math contest problem:
 
Prove that the unit-digits of a Mersenne Prime(for p >2, 2p-1) will be either 1 or 7.
example: 
p=17, 2p-1=131,071
p = 31, 2p-1=2,147,483,647
 
p.s. So far there are only 46 confirmed Mersenne primes. (Wikipedia)
www.ddhw.com

 

作者: idiot94    时间: 2009-4-1 23:50
标题: 为什么没有人做了呢?这个题目比下面那个六年级的容易很多啊。。

不要被那个深奥的梅森素数吓着了,其实和它没有什么太大关系的。
www.ddhw.com

 

作者: yma16    时间: 2009-4-8 04:19
标题: 回复:An 8th-grader number theory problem

Consider 2^n where n=3,4,5...

The last digits of the sequence are 8,6,2,4,8,6,2,4,... The 4 numbers repeat. So 2^p-1 cannot have 9 as the last digit. In order to get 3, 2^p must be 4. But when 2^n has 4 as the last digit, n is always even.www.ddhw.com

 





欢迎光临 珍珠湾ART (http://zzwav.com/) Powered by Discuz! X3