Very good explanation, more intuitive than simulation! Thanks. 本贴由[oldstudent]最后编辑于:2007-10-25 19:28:58 |
衷心感谢诸位网友对棉花糖MM题的争论的关心和贡献!yinyin将陆续贴出对该问题正确解和错误解的分析。望朋友们批评指正。 |
感谢yinyin、HF、Hu兄和oldstudent的释疑解惑,尤其感谢yinyin不厌其烦、负责到底的引导和解释。 脑坛之趣,在求真、求知。理性的探索和讨论是求知的正途,任何争论都应以索隐求真、辨明正误、解决问题为要,对于输赢大可不必挂怀。解决了问题,所有人,无论正方反方都将获益,争一时的输赢有何意义?大象无形,巨音希声,孰是孰非自有公论,并不是嗓门大就会赢的。 |
开眼了。长见识了。论坛里藏龙卧虎。 做人要以谦虚为本,宽大为怀。做学问也是这样。 论坛是个很奇妙的地方。最不能牛的地方就是论坛,因为那里能人太多,说不准就有个权威学者在潜水;最可以牛的地方也是论坛,因为没人知道,也没人关心你是何方神圣,你使出牛犊精神,无所顾忌,猛牛一气,岂不爽歪歪!? |
As a followup of Songhu's explanation, I think this is also a multinormial distribution problem. f(x1,X2)=3!/X1!*X2!*(1/2)^X1*(1/2)^X2 f(3,0) is not equal to f(1,2). P=f(1,2)+f(2,1)=(3!/1!2!+3!/2!1!)(1/2)^3=0.75 Cotton Candy's question will be f(X1,X2,X3,X4,X5)=12!/X1!X2!X3!X4!X5!(1/5)^12, very complicated. Waiting for YinYin's solution. 本贴由[oldstudent]最后编辑于:2007-10-27 8:8:55 |
用多项分布来做棉mm的题是很麻烦,要分别算出C(11,4)个项的数(有些项的数相同,可合并简化,但仍有好多不同项,且系数不尽相同),再相加求其总和。 |
Totally agree. I just want to make the point that f(3,0) is not equal tof(2,1), and echo Songhu's explanation. Waiting for your discusion in the other string. Please continue. |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |