five different CD-ROM games, Garble,Trapster,Zoom,Bungie, and Blast 'Em, are offered as a promotion by SugarRush cereals. One game is randomly included with each box of cereal。
Determine the probability of getting all 5 games if 12 boxes are purchased
花了挺长时间。。还是没理出个头绪。。。。。。。。。。。。。。
7个球进5个洞,一共有多少种进法? 这个题的答案就是:7个球进5个洞,除以12个球进5个洞。over |
不对吧,请再想想。 |
想不出,请公布你的答案吧 |
再留点时间给脑坛朋友们想想吧,脑坛上能人很多。 本贴由[yinyin]最后编辑于:2007-10-19 22:46:59 |
可我想知道答案啊。。。。。。 |
YinYin perhaps is your Math Prof. 本贴由[salmonfish]最后编辑于:2007-10-20 0:24:46 |
HF兄怎么把帖子删了?已很接近正确答案了。 |
Let f(5) be the number of possibilities that all 5 games appear, and similiarly f(4) means only 4 appears.... f(5) = 5^12-C(5,4)f(4)-C(5,3)f(3)-C(5,2)f(2)-C(5,1)f(1) similarly, f(4) = 4^12-C(4,3)f(3).... ... f(1) = 1 By induction, you will get f(5), and f(5)/5^12 is the answer. |
Found a bug |
再利用C(n,n-1)xC(n-1,n-2)=2C(n,n-2)等有关组合的关系式简化一下,就得到类似于你删掉的那帖子中的表达式,仅有一点点差别:正负号交替出现 本贴由[yinyin]最后编辑于:2007-10-20 12:18:57 本贴由[yinyin]最后编辑于:2007-10-20 12:38:35 |
不会吧,CCMM在Canada。 |
对于这种算法,我只能一声长叹:今夕何夕啊? 言归正题,还是那句话:这题的答案就是: 7个球进5个洞,除以12个球进5个洞。over 其实这道题非常简单,只要明白了思路,就是一个简单的排列和组合,哪里需要什么幂运算呢?还又加又减的,我真的不知道这些人在忙些什么。 |
这恐怕又是内地应试教育的恶果。地球上成千上万数学家和数学爱好者在忙些什么,这对部分仅仅通过突击训练、在某种“考试”或“比赛”中过关的人来说,是难以理解的。 建议金牌老弟用3球2洞的例子来审查一下你的解题思路和结论。 HF的解显示出扎实的数学功底和慎密的逻辑思维。浮躁之士应好好向他学习。 CCmm的这一题是个好题。这类属于古典概型范畴的题,有一些是很能迷惑人的。甚至让部分大学数学教授都不知所措。所以,即使做不出或者做错了此题,也不要以为自己不够聪明。 还是那句话:脑坛上能人很多。 |
HF的结果经简化后,得 1-C(5,4)(4/5)12+C(5,3)(3/5)12-C(5,2)(2/5)12+C(5,1)(1/5)12. |
请把最后这个数字算出来好吗?又是幂又是加减的,我真的不知道你在忙什么。5的12次幂,4的12次幂,2的12次幂,这些数别说用手算,就是看起来,都眼晕。 请把最后的数字公布吧,OK? 别人是没法替你算这个复杂公式的。 |
哈哈哈哈,本来一个很简单的高中的排列组合题,竟然成了什么古典概型范畴。我只能说两个字:耻笑。 请公布解题的那个公式的含义和最后的结果吧(如果你有耐心算出你那个数字的话)。 然后我也说一下高中的排列组合的算法,看看到底这个世界是怎么这些无知的人搞复杂的。 |
我的算法很简单,公式更简单。一个正常人,用30秒,心算都能算出来,一点都不夸张。因为这道题就是一个高中很简单的排列组合而已。 还是让某些“聪明人”先说吧。也让大家最后看看两种算法的差别到底有多大。还是那句话,我真的搞不清这么简单的一道题,怎么到了某些人手里,又是幂,又是加加减减,添添减减,修改来修改去,最后还弄出个什么古典概型,我真的不知道这些人在瞎忙些什么..... |
恩。。。。。还在高中混呢。.希望是最后一年....... |
请不要出言不逊。金牌老弟想要“耻笑”谁?心里恐怕还没底吧,虽然脑坛上绝大多数朋友都知道最后被耻笑的是谁。搬起石头会砸自己的脚的! 此题是求某一事件的概率,属古典概型范畴。老弟说“本来一个很简单的高中的排列组合题”,可是老弟的“答案”中又用了“除以”二字。难道老弟的“高中的排列组合”要用到除法?事实上,这除法恰恰是从古典概型问题中事件概率的定义得来的。正因为老弟不懂古典概型,不懂为什么通常能用排列组合以及幂来解决古典概型问题,更不懂什么情况下该用排列组合、什么情况下该用幂,才导致老弟出错。看来老弟的数学功底有待加深,还是先谦虚一点为好。山外青山天外天,脑坛上能人很多。若有谁要盲求“简单”,可以回到旧石器时代去,也不必上脑坛来。 HF和yinyin是用规范的数学表达式来给出答案的。姑且不说金牌老弟答案的表达不规范不严谨(可能在内地奥数突训中未涉及),老弟能否先把你的解题思路和答案(数值)说说?总有个先来后到,老弟先于我们发跟帖解题,就请优先发表见解吧。不要再像几个月前在命题逻辑方面的讨论中始终不敢说出你自己的理解那样让人“耻笑”。 yinyin也不想让老弟再次被人“耻笑”。毕竟,脑坛是朋友们自娱娱人的平台,不是“耻笑”别人的地方。为此建议老弟: (1)赶快注册,便于底下沟通。 (2)用3球2洞的例子来审查一下你的解题思路和结论。回头是岸,衷心欢迎。 |
欢迎CCMM到美国来深造。 |
知道“n个事件中至少一个发生”的概率的计算公式吗?那里边不也是“加加减减”?yinyin有一个回帖修改过,但不是修改答案,而是修改解释词,使之更确切更易理解。看过修改前的回帖的朋友可对比一下。金牌老弟有存底的话,不妨公诸于众。 脑坛上,任何人一旦发现自己的帖子有错或有欠缺之处,是容许而且应该更正的。可以撤销或修改原帖,也可加帖说明,视具体情况而定。欢迎老弟知错就改,切忌浮躁固执。 |
请你算出此题数字结果,好吗?不要转移话题。 |
请你算出此题的数字结果好吗?我不明白别的,我只知道,这道题一定有一个数字结果的,对吗???? |
请公布你的计算结果,好吗?我别的不明白,但是我知道,这道题一定是有一个最终数字结果的,对吗??请把你的数字结果算出来,好吗?比较一下结果,自然就知道谁该被耻笑了。?不要在争论上浪费时间了。 |
一个高中的题目,题目一共只是涉及两个数字:5和12,竟然被人列出一个无比复杂的公式,而且还难以算出最后的计算结果。我不知道这是怎么一回事。 |
按那表达式,脑坛上绝大多数朋友都能用计算器(calculator)算出数值结果来。 你能否用高中的排列组合来表达你那“7个球进5个洞,一共有多少种进法”给大家看看? |
好啊,请金牌老弟先把你的数值结果贴出来,随后我贴出HF和我的数值结果。 yinyin还是希望老弟先用3球2洞的简单例子验算一下你的结果,那样比较容易发现问题。自己改正错误总比别人指出错误要好些,学到的东西更扎实些。 |
老弟先贴吧。先贴简单的“3球进2洞,2洞皆有球的概率”也行,也就是在楼主的原题中,以3代替12、以2代替5。yinyin真希望你能冷静地思考问题,不要意气用事。 |
金牌老弟若能从“3求2洞”的简例中领悟楼主原题的奥妙,从而认识到自己仓促而成的解题思路错误所在,也不失为一个妥善结局。发个帖,说声错了就行(包括棉mm那里),以免误导别人。yinyin不会抓住不放,但老弟也应引此为戒,吸取教训。至于解题分析和数值答案,老弟若已完全想通,当然最好还是由老弟来帖出,解铃还得系铃人。若老弟无意来做,yinyin或HF可当此任。 脑坛诸友(包括yinyin自己)也应以此为戒。对解题有分歧是常有的,大家都要心平气和地来讨论,不要偏离脑坛自娱娱人的宗旨。 |
但愿最终能够明白。谦虚谨慎,戒骄戒躁,多学多问才能有学问。 |
先前已给出用组合数和幂表示的答案:1-C(5,4)(4/5)12+C(5,3)(3/5)12-C(5,2)(2/5)12+C(5,1)(1/5)12 。 脑坛上大多数朋友都能通过计算器(calculator)或手算得到其数值。yinyin用带有幂运算功能的计算器算出其数值为 0.678002688,请朋友们核对一下。整个计算过程,共按了36次键(用 .8 代替(4/5),......,5 代替C(5,4),......),花了45秒钟。这样的计算(包括心算 4/5=0.8,C(5,3)=10 等),相信绝大多数高中以上水平的人都能胜任,棉mm也不例外。想不到这竟能难住奥数金牌。 HF兄能否解释一下您得到那个递推公式的思路?大家都能从中得益。 金牌兄弟说说你的简单方法和数值结果吧。如果发现自己错了,承认一下,以免你先前的言论误导他人(特别是中学生),也显得有君子风度。 注:网上也有好多计算器可用,如 http://www.calculator.com/pantaserv/makecalc?cn=scientific&mem=0&value=0&tp=n&nosci=y&trig=y
|
越来越离谱了,计算器都弄出来了。我还是那句话:恐怕你自己用手算,都嫌麻烦吧? 请用手算,好吗? 我再次恳请你,请按照高中生的要求,用手算,可以吗?你小数点后那一堆数字我实在看不明白,请用分数表达,OK??? 另外,请写出计算化简过程,否则,大家怎么知道你是通过这个公式算出来的呢?你把公式摆在那里,然后抄来一个正确结果,大家怎么验证?谁能替你手算呢? 请接受大家的监督,好吗???你自己的公式,恳请你自己动手算一下,这个要求不过分吧? |
顺便说一下,棉mm原帖的标题应该为“一道概率问题”。现代统计学是建立在概率论的基础上的。棉mm修的那门课是 Data Management,属统计学范畴,要用到一些概率论知识。所以老师会提供这样的古典概率题给学生。据说她老师也弄不清怎么解。 HF兄的递推公式的思路就请HF兄来解释。yinyin的直接表达式既可从HF的递推公式迭代化简得到,也可直接用另一条思路推出,容yinyin随后抽空贴出。总之,棉mm的这道题值得推荐,大家都能从中得益。
|
金牌老弟,你至今仍未对此题写出一个数学表达式,快贴出你的“简单”思路、表达式和答数吧。可别再像上回讨论命题逻辑时那样始终不敢说出自己的理解(一再食言)。知道错了,就勇敢地承认错了,也算是个好汉。 |
。。。。怎么感觉一股火药味。。。。 不过呢。。。用计算机算应该不算离谱吧。。。我们DATA 课。。不用计算机。。不得算死了。。我是没学过什么心算或其他的巧算。。只知道要我用笔算算出12次方的东西。。怎么也不可能。 大家怎么知道你是通过这个公式算出来的呢?。。。。。我算过了。用计算器,取了三位小数---0.678,跟YINYIN 算出的答案一样..也跟我在使用的那本DATA 书后面的答案一样........... (目前正在琢磨那个符号一正一负的原因~!....嘻嘻~!) 笔算。。倒不必了吧..好好的计算机不用。.花那么长时间用手算...貌似有些不太明智..再说了。.DATA课老师是鼓励我们计算机算的。.没带计算机考试的同学们..还被老师说了呢........ 不知道..金牌大哥您的方法...?? 听说是很简单的解题方法哦..... 我想知道耶...因为个人比较懒..如果有简单的。..而且貌似也合理的话..我会非常喜欢的。.... |
别勉为其难了。明眼人都明白。 |
yinyin对此题解答的表达式和数值都已公布,老弟认为有错,请指出,并请把你认为正确的结果公布。不要再像上回讨论命题逻辑时那样一再食言。公布你的结果吧! |
你老弟还没公布你自以为正确的结果呢!说别人错,请指出哪儿错。在讨论脑坛问题中采用这种手法,企图给人以错觉,你老弟不是第一次了。善良人们的耐心也是有限度的,劝老弟收敛点,对你自己有好处。 |
yinyin的解题结果早已公布,而你老弟却至今不敢公布。说别人的错,请指出来啊。说你自己的对,请拿出来啊。 “然后再说我的不迟”,老弟你一再食言,现在坛上有谁还能相信你这话?拿出实际行动来,公布你的答案! 看了老弟此帖的感觉是:黔驴技穷。竟然又给人乱扣帽子,以乱视听。想要半斤八两?没那么容易吧。其结果,恐怕还会象上回那样。yinyin不明白,你老弟从哪儿学来这等本事的?你那恩师在奥数突训班上还不至于教你这些东西吧。他要是看见了你这些帖子,也会气坏的。要不要转发点给他看看,让他来劝劝你?尽管是匿名(但用了奥数金牌,不管是真是假),他也会知道是哪位徒弟的。 yinyin忠告:悬崖勒马,回头是岸。给了你老弟多少次下台阶的机会,你不领情。再不回头,难免别人会引用你老弟帖子中抛出来的“赖”字了。出言不逊者,往往会搬起石头砸自己脚的。 |
懂得丢人就好,还可救药。见如今,何必当初。吸取教训就是了。不管是谁,知道错了,认个错,改了就好,人们也不会总去计较过去。 你至今没有公布你的结果,别人难以帮你分析问题何在。yinyin也只是根据多年工作积累的经验,从你第一个跟帖中的“7个球进5个洞,除以12个球进5个洞” 就知道你可能触犯了求解古典概型问题的要领(好多人都很容易走入那歧途)。如果你的答数就是棉花糖mm说的老版书中答案33/182,那就是yinyin一开头对你的估计:“错了吧”。请想想(如果信不过yinyin在概率论方面的功底),新版书为什么要把答案33/182改为0.678呢?当然,你还可能有别的答案,拿出来给大家看看吧。
现在回头还来得及。把你的结果拿出来,yinyin帮你分析,决不“耻笑”你。敢于正视自己不足之处,本身就是一种美德。抛却过去,还是一条好汉。
本贴由[yinyin]最后编辑于:2007-10-24 7:32:38 本贴由[yinyin]最后编辑于:2007-10-24 13:48:11 |
谢谢支持和建议!yinyin也知道明眼人都清楚。但对方毕竟是个年轻人,要走的路还很长,还多少有点点才,还是再尽力拉一把吧。倘若让他能在脑坛学得点做人求知的道理,也不枉大家来此脑坛一行。 |
yinyin一直在规劝他正视现实,把他的“简单”结果公布出来,心平气和地讨论。唉,可他一味躲闪。yinyin估计,他的所谓“简单”结果,无非是33/182(这是抄来的),违背了古典概型所要求的equally likelihood 这一基本要求而导致错误。
但愿金牌弟兄看到此帖后有所醒悟(见上面黑体字)。给错误解33/182,大家可以理解,这是盲从某些书本或网上材料的后果,连某些教授都会犯这样的错误。要是给别的什么,恐怕就更难自圆其说了。
棉mm请见楼上yinyin新贴出的题,一点一点来,定能学到真正的知识,达到知其然且知其所以然 。 |
I just did a simulation and got a result very closed to 0.667. |
Thank you very much for your support! |
Respect Yinyin and HF for their deep knowledge in probability theory. Many thanks for your time to provide the solution here. I tried to solve the problem and got the answer as 33/182. Now I know I was wrong. Maybe Yinyin and HF don't think it is neccessary to do a simulation, but I did it with SAS. I generated 10000 samples and 6796 of them include all 5 items, so the probability is 0.6796, which is very close to the calculation by Yinyin and HF. I think this is a very good problem with exellent solution. I suggest Yinyin post the problem and answer in a different string without those argument posts. |
Your work is very interesting. Thanks for posting your result. I am planing to post a series of the analysis and discussion on the problem of balls and holes in the nearest future. The first one has been posted. Please check it. Probably, I need you to do more simulations. Thank you! 本贴由[yinyin]最后编辑于:2007-10-26 2:43:51 本贴由[yinyin]最后编辑于:2007-10-26 2:44:50 |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |