75% |
我觉得还是50% |
如果将问题改成这样: 假设有三个学生分别解答一数学难题. 他们得从四个可能的答案 A, B, C, D 中选出正确的答案. 已知他们各自得出正确答案的概率都是1/2. 如果他们同时选 A 为答案. 那么 A 是正确答案的概率是多少?
另外如果他们得出正确的答案的概率都是1/4 (什或更小). A 是正确答案的概率是多少? |
定义一下几个事件: 事件X: 抛硬币出现正面。假设X出现的概率是p,也就是 P(X)=p 事件A: 第一个人预言硬币是正面。根据题意,P(A|X)=0.5 事件B: 第二个人预言硬币是正面。与上类似,P(B|X)=0.5 事件C: 第三个人预言硬币是正面。与上类似,P(C|X)=0.5 另外,用[X]来表示事件X的反事件。 这样一来,楼主的问题就是求 P(X|A,B,C)。 P(X|A,B,C) = P(A,B,C|X)*P(X) / P(A,B,C) = P(A|X)*P(B|X)*P(C|X)*p / P(A)*P(B)*P(C) 在上式中,P(A) = P(A|X)*P(X) + P(A|[X])*P([X]) = P(A|X)*P(X) + (1-P([A]|[X])*P([X]), 所以 P(A) = 0.5*P(X) + (1-0.5)*P([X]) = 0.5*(P(X)+P([X])) = 0.5 同样地,我们可以得到 P(B)=P(C)=0.5 再回到前面,P(X|A,B,C) = 0.5*0.5*0.5*p / 0.5*0.5*0.5 = p = P(X) !!! 既然题中没有给出p,那么正确的答案就是:不知道! 顺便说一下,上面 P(A)=P(B)=P(C)=0.5 与p无关,也就是说,不管硬币是否标准,正面的概率有多大,“预言家”们可以尽管信口开河,只要正反的预言频率是对半分,最后预言准确的概率就一定是50%. |
把“预言家”换成“赌徒”,“预言”换成“猜测”,这样可能题意更明确一些。要不然原题就太简单了,显得出题人太无聊。 |
假如“我”用的硬币 p=0.1,原题的陈述完全不会有变化,难道你觉得答案会是想当然的50%吗? |
方向正确,值得鼓励!比一味叹息要强得多!但有几点错误. 最致命的一点是P(A,B,C)<>P(A)*P(B)*P(C), P(A,B,C) 应该等如 P(A,B,C|X)*P(X) + P(A,B,C|[X])*P([X]). 你的公式在这情况下虽能得出正确答案.但多少有点巧合.另外在某些情况下P(A|X)*P(B|X)*P(C|X)*p / P(A)*P(B)*P(C)会大于一. |
我想这是概率论中的最基本概念。 甭管是预言家还是赌徒,掷硬币和他们的预言之间没有任何实际关联。 如果说有关联,那么这个关联也只存在于我们的思维中,而非物理世界中。 除非你认为那些预言家或赌徒有特异功能,他们的思维可以影响硬币的下落过程。 |
首先说明一下,原题中的“预言”实际上指的是“猜测”,因为“我”先抛硬币再去问预言家,而不是反过来。 “预言的正确率都是1/2”指的是以下两个概率: 1. 硬币正面朝上(X),预言家也说是正面(A),“预言的正确率”是条件概率P(A|X) 2. 硬币反面朝上([X]),预言家也说是反面([A]),“预言的正确率”是条件概率P([A]|[X]) 在我的解法中,并没有对A和X的相关性做出任何假设。根据计算结果,P(A)=0.5=P(A|X),这说明了A和X的确不相关,所以硬币正面朝上的概率是未知的p,答案是“不知道”。 |
The 3 events are not truely "independent", P(A,B,C)=P(A)*P(B)*P(C) is only true when no more than 1 prophecy has an accuracy <> 1/2 (more generally, no more than 1 prophecy with accuracy <> 1/N,where N is the number of possible outcome). To illustrate this, let's consider an extreme situation. if P(X)=0.5, P(A|X)=P(B|X)=1, and P(C|X)=.5 as it was. P(A) = P(A|X)*P(X) + P(A|[X])*P([X]) = 1*0.5 + 0*0.5=0.5, similarly P(B)=0.5 P(C) = 0.5*0.5+0.5*0.5 = 0.5 according to P(A,B,C)=P(A)*P(B)*P(C), P(A,B,C)=0.5*0.5*0.5 However, obviously, P(A,B,C) =0.5*1*0.5 since when A occurs, B must occur. Now let's consider another situation. If the accuracy of all 3 prophecies are 0.4 instead (lower than 1/2 to satisfy those who are strongly against the fortune telling profession), that is, P(X)=0.5, P(A|X)=P(B|X)=P(C|X)=.4 I think P(X|A,B,C) = P(A,B,C|X)*P(X) /P(A,B,C) = P(A,B,C|X)*P(X) /(P(A,B,C|X)*P(X)+P(A,B,C|[X])*P([X]) )=P(A|X)*P(B|X)*P(C|X)*P(X) / (P(A|X)*(P(B|X)*P(C|X)*P(X)+P(A|[X])*(P(B|[X])*P(C|[X])*P([X]))=.4*.4*.4*.5/(.4*.4*.4*.5+.6*.6*.6*.5)=.23 Again if P(X)=0.5, P(A|X)=P(B|X)=P(C|X)=.4, P(A)= P(A|X)*P(X) + P(A|[X])*P([X]) =.4*P(X)+.6*(1-P(X))=.4*.5+.6*.5=.5, Similarly, P(B)=P(C)=0.5 so when P(A|X)=.5, P(A) always = P(X) as you pointed out, however, when P(A|X)<>.5, P(A)=P(X) only if P(X)=.5) Afterall I don't think we need P(A),P(B) or P(C) to solve this problem. And also if P(X)=0.5, P(A|X)=P(B|X)=P(C|X)=.8, P(X|A,B,C) >1, if we apply P(X|A,B,C) = P(A|X)*P(B|X)*P(C|X)*p / P(A)*P(B)*P(C). As a conclusion, whenever the accuracy of a prediction = 1/N, where N=the number of possible outcomes of a trial, then the prediction has no value and has given no additional information and hence useless. It doesn't matter if the outcomes are equiprobable or not. Actually you and 贾明 has already pointed it out. |
看了后面的,才发现忽略了“回答正面和回答反面”对结果影响的概率是一样的。 |
I didn't go through all of your post, but in your first extreme case: "P(A|X)=P(B|X)=1" ==> "when A occurs, B must occur" This can't be more wrong! Everybody who knows fundamental set theory will know that the left argument only means that Event X is included in Event A and Event B, but by NO means it equals the right argument. To see this, I simply need to point out that P(A|[X]) != 0 (not equal to zero), which makes your whole argument erroneous. By the way, "互相之间不知道" is equivalent to P(A,B,C)=P(A)*P(B)*P(C). This comes from the definition of INDEPENDENCE. |
You are right, I admit that it is a mistake not to clearly state also that P(A|[X])=P(B|[X])=0, ie 100% accuracy, but I thought you could see that through the steps in that same example as I clearly equated P(A|[X])= 0. As math assignment certain points (or all points) would be deducted, but as a friendly discussion, I hoped you could see what I truely meant and ask yourself what if I've already written down the condition P(A|[X])=P(B|[X])=0. I may know nothing about fundamental set theory but I really don't see anything wrong saying "when A occurs, B must occur" if the 1st and 2nd persons both have 100% accurate prediction. Please show me how P(A,B,C)=P(A)*P(B)*P(C) in this case. Anyway, I believe a simple similation in Excel would give you some more insight, try out some different combination of probabilities to see if your formula works fine for all cases. |
如果你假设 P(A|X)=P(B|X)=1, 且 P(A|[X])=P(B|[X])=0,如果你熟悉集合论的话,马上就能看到A,B,X 是在同一个集合,也就是说A,B,X是等价事件,这时候A,B,X当然互相不独立,P(A,B,C)=P(A)*P(B)*P(C) 也就不成立了。(你给的条件就是不独立,怎么又让我来证明独立性呢?) 如果你还没建立起这样的直觉,从你的条件来证明A,B,X是等价事件也不难。 给定条件;P(A|X)=P(B|X)=1, 且 P(A|[X])=P(B|[X])=0 欲证:A,B,X是等价事件 证明:先证A,X等价,或者说 P(X|A)=P(A|X)=1 P(X|A) = P(A,X) / P(A) = P(A|X)*P(X) / (P(A|X)*P(X)+P(A|[X])*P([X])) 代入已知条件,就得到了 P(X|A)=1,剩下的就不用多说了。 希望有所帮助。 |
为了便于讨论,我先重新定义一下事件。 事件X: “我”抛了一个硬币。正面朝上是事件X+,反面是X-。 事件A:预言家做了一个猜测。猜正面是事件A+,反面是A-。 因为原题中,X发生在前,A发生在后,所以上面我把“预言”改成了“猜测”。 有一点是肯定的,出于因果关系,A无论如何都不会影响X。那怎么会有概率关系呢? 这是因为 X 可能会影响 A。预言家可能看到了抛硬币的过程,或是对“我”抛硬币的手法有所了解,或是对“我”的硬币有些了解,或者是比较能察言观色,等等。只要条件概率 P(A|X) != P(A),这就说明 X 影响了 A。 另一个概率 P(X|A) 是后验概率,指的是在A+/A-发生以后,反过来推测 X+/X- 发生的可能性。这只是一个数学表示,并不是说 A 能够影响 X。 假如A和X完全不相关,那就有 P(A|X)=P(A), P(X|A)=P(X),题目答案一目了然,出题人不至于这么无聊吧? 希望有所帮助。 |
我再拜读阁下的文章, 虽然里面的公式看似可作一般应用, 但原来它们只适用于这个特殊情况... 真是自寻烦恼,對不起!對不起!千个對不起!浪费了大家的宝贵时间,再一次對不起!这个什么集合论就是高!了不起!怕不是我这么一个後學所能理解.这里先谢过! |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |