n<=3 2N-3次 n>3 2N-4次 本贴由[huxlnn]最后编辑于:2006-2-19 1:31:30 |
For n = 2,3, F(n) = 2n-3; for n>=4, F(n) = 2n-4. It is relatively easier to show F(n) <= 2n-4. Indeed, it can be shown to be true one by one for n=4,5,6,7. For n>=8, it can be proven by induction. For n=2k, the gossips are first shared among pairs, then k representatives (one for each pair) share info in 2k-4 steps, finally all info are passed to other k representatives -- altogether 4k-4 steps. The case of odd numbers, though more tricky, can be treated similarly. It is more tough to prove F(n) >= 2n-4. In fact I haven't succeeded. It's really a nice problem. Constant, where did you get all these wonderful problems? Thank you for making this place so attractive. |
另一半非常难。我看看有没有时间把我知道的证明写得好懂一点贴出来。 |
当n=2,3时,容易知通话次数分别为1,和3, 当n>3时,取第1,2两人作为A列,另外n-2人在B列,则 一、B列依次向后积累信息,当第n-1人向第n人完成通话后,此两人知道B列全部信息,共通话n-3次; 二、A列中两人通话一次,都知道了A列的全部信息,通话1次; 三、B列第n人向A列第2人通话,第n-1人向A列第1人通话;通话结果此4人都知道了全部信息,共通话2次 四、B列第n人向B列除第n-1人外的n-4人传递所知全部信息,通话n-4次,全部人员知道全部信息, 故总的通话次数为n-3+1+2+n-4=2n-4次 |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |