珍珠湾ART

标题: 平均因子数 [打印本页]

作者: constant    时间: 2005-12-28 22:51
标题: 平均因子数

难度:++ 到 +++www.ddhw.com

对任意正整数n,令t(n)为 n 的因子个数,T(n) = (1/n)*Sum (1 to n) (t(k)) 为前n个t(k)的平均值。

  n:    1,    2,   3,   4,  5,   6,     7,     8, ...
t(n):  1,    2,   2,   3,  2,   4,     2,     4, ...
T(n): 1, 3/2, 5/3,  2,  2, 7/3, 16/7, 5/2, ...

证明 |T(n) - ln n| < 1。

www.ddhw.com

 


作者: QL    时间: 2005-12-29 21:57
标题: 回复:平均因子数

An other way to count nT(n) is the following:
For any k<=n, k will be counted [n/k] times. So
nT(n) = sum_k ([n/k])
Hence T(n) = sum_k ([n/k])/n, which is bounded above by 1+1/2+...1/n and bounded below by
1/2+...1/n -- so is ln(n). Hence the conlculsion.
www.ddhw.com

 

作者: constant    时间: 2005-12-30 18:17
标题: Right. It's double counting again [:)]

  Right. It's double counting again









欢迎光临 珍珠湾ART (http://zzwav.com/) Powered by Discuz! X3