珍珠湾ART

标题: 10个人来聚餐 [打印本页]

作者: constant    时间: 2005-12-11 01:05
标题: 10个人来聚餐

难度:+++www.ddhw.com
 
脑坛有10个人。这10个人来聚餐和离开的顺序一共有多少种可能?几个人可以一起来,也可以一起走。也可以一人走的同时另一人来。
www.ddhw.com

 www.ddhw.com

 

  本贴由[constant]最后编辑于:2005-12-11 11:47:13  


作者: QL    时间: 2005-12-11 06:07
标题: 回复:10个人来聚餐

Can a person come and go at the same time?
www.ddhw.com

 

作者: constant    时间: 2005-12-11 19:48
标题: No. Everybody has to come in and eat something

  No. Everybody has to come in and eat something





作者: QFT    时间: 2005-12-12 18:03
标题: 回复:10个人来聚餐

It is equivalent to arrange the following 20 symbols,
A1, A2, ..., A10www.ddhw.com
B1, B2, ..., B10
under some rules.
(1) they can occupy same position.
(2) B1 must behind A1, B2 hehind A2, and so on.
 
We can first ignore the 2nd reqirement, but use instead the condition that A1 and B1 cannot be in the same position, and so on. The result divided by 2^10 is what we need.
 
we have such recurrence relationship,
T(n+1, 2) = T(n, 2) * P(2,2)www.ddhw.com
T(n+1, 3) = T(n, 2) * 2*3 +T(n, 3) *P(3,2)
T(n+1, 4) = T(n, 2) *3*4 +T(n, 3) * 3*4 +T(n, 4) * P(4,2)
...
T(n+1, m) = T(n, m-2) *(m-1)*m +T(n, m-1) *(m-1) *m +T(n, m)*P(m, 2)
 
where T(n, m) denotes n pairs occupy m positions.
We can use matrix multiplication to present the above relations. A computer program will do the calculations.
I don't find a general expression for this problem.
www.ddhw.com

 

作者: constant    时间: 2005-12-12 21:30
标题: 回复:回复:10个人来聚餐

应该是对的。我也只有递推解。最后算出来 T(10) = 1843200116875263613
www.ddhw.com

 





欢迎光临 珍珠湾ART (http://zzwav.com/) Powered by Discuz! X3