Let f(x)=lnx/x then f '(x)=(1-lnx)/x^2, f '(x)<0 if x>e So f(x) is strictly decreasing, lnx/x>lny/y if y>x>e i.e. y*lnx>x*lny, or ln(x^y)>ln(y^x), Therefore x^y>y^x, i.e, there is no solution if y>x>e if x=2 we know 2^4=4^2 if x=1 1^y=y, y=1, x=y=1 does not satisfies the condition if x<=0, clearly no solution So 2^4=4^2 is the only solution. |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |