1. "等径球"的最紧密堆积,最大邻近球数(配位数)为12。
2. 不太懂题意。我想大概可看作“等径球最紧密堆积+较小的球填充空隙”的情况:设大球的半径为R,每个大球与12个大球接触后,周围留下8个正四面体空隙和6个正八面体空隙,前者可填入的球最大半径是0.414R,后者可填入的球最大半径是0.732R。所以大球的最大邻近球数是26 (12大球,8小球,6中球),小球的最大邻近球数是4个大球,中球的最大邻近球数是6个大球。
(2的情况是"非等径球"的最紧密堆积) 本贴由[husonghu]最后编辑于:2005-11-20 3:7:43 |
It requires each one touching the rest of the balls. It is not "等径球"的最紧密堆积. |
1. 我觉得答案就是4 ---- 4个等径球的球心在正四面体的顶点; 正四面体的棱长是球的直径。 2. 有一个答案是5 ---- 如上述4个等径球放置后,再在中间的空 隙处夹上一个半径为0.414R的球。但我不肯定还能不能更多。 |
For (1), 4 is correct. Can you prove it? For (2), 5 seems OK. It must be difficult to prove. |
Haha, the proof part is really hard for me. I would rather not try it at all, as I'm totally clueless at present. See if anybody can help. |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |