珍珠湾ART

标题: 小学生就能看懂,数学家却做不出来的3X+1问题,你来试试?难[:%] [打印本页]

作者: ob    时间: 2005-11-12 01:06
标题: 小学生就能看懂,数学家却做不出来的3X+1问题,你来试试?难[:%]


任选一个整数,作下面的操作:www.ddhw.com

如果是奇数,把这个数乘3,然后加1
如果是偶数,把这个数除以2www.ddhw.com

然后把做完的结果重新作同样的操作,我们获得一个序列。www.ddhw.com

定理结论:这个序列最终会回到4-2-1上来。也就是说,不论原数大小,最终回到1。不过,过程有些是非常复杂的,有些数字跑回这个循环,可能经历很多次的颠簸。www.ddhw.com
作者: 乱弹    时间: 2005-11-12 02:21
标题: 难度:++++++++++++++++++++++++++++++++++++++++++++++

谁解决了这个猜想,不说和哥猜的证明人一样有名, 也至少上很多大报的头条了。www.ddhw.com
 
 
www.ddhw.com

 

作者: ob    时间: 2005-11-12 02:29
标题: 行家一出手,就知有没有[@};-][@};-]

  行家一出手,就知有没有





作者: yma16    时间: 2005-11-12 02:57
标题: You can get the Fields award if you solve it and

you are under 40.www.ddhw.com

 

作者: husonghu    时间: 2005-11-12 08:30
标题: 这位朋友显然是行家,见识广,欢迎你多显显身手啊![@};-][@};-]

  这位朋友显然是行家,见识广,欢迎你多显显身手啊!





作者: Archi    时间: 2005-11-13 03:08
标题: 试一试

Think of a Markov chain, with state space {1,2,...}. Notice that:www.ddhw.com

1) First verify that 1==>1, 4==>2==>1, 2==>1, therefore 1 is an absorbing state.
2) 4n ==> 2n, 4n+2 ==> 2n+1, they are absorbing states (become a smaller number);
3) 4n+1 ==> 3n+1, it is also an absorting state;
4) 4n-1 ==> 6n-1, with probability 0.5 to go to an absorbing state (4k+1). It is a transient state, with probability 1 to be absorbed.

From above, all states (all positive integers) will eventually be absorbed to 1.

Of course a formal proof can be more rigorous and will involve induction.www.ddhw.com

 

作者: husonghu    时间: 2005-11-13 03:54
标题: 欢迎你[@};-][@};-][@};-]很好的尝试。不过我有点看不懂,等其他各位来讨论吧!

  欢迎你 很好的尝试。不过我有点看不懂,等其他各位来讨论吧!





作者: 流动的建筑    时间: 2005-11-14 03:59
标题: 上面的解法有漏洞,刚想到更好的方法

For any positive integer n, define the operations:

F: F(n)=3n+1, n is odd, and
G: G(n)=n/2, n is even.

Now define a new operation H,
For n even, n=(2^k)*m, where m is odd, H(n)=G(..G(n)..)=m, and
For n odd, H(n) = F(n) = 3n+1.
Therefore, H(n) turns odd to even, and even to odd.

Now represent n in base 2, e.g., 43 ==> 101011. Notice that:www.ddhw.com

1) If n is even, H(n) removes the trailing zeros in n;
2) If n is odd, H(n)=3n+1=2n+n+1, where 2n is to add a trailing zero to n. We can verify that the number of 1's in H(n) is strictly decreasing. (By how many? I'll leave it as an exercise to you. A hint, think of XOR of neighboring bits.)
3) H(1)=100, H(100)=1.

It is clear now that for any positive integer n, in limited steps, the number of 1's in n will be reduced to 1. QED.
www.ddhw.com

 

作者: 流动的建筑    时间: 2005-11-14 04:27
标题: 补充

If n = 11...1 (all 1's), the number of 1's in H(n) equals that of n, but with a zero added as the second digit.www.ddhw.com

For any other odd number n, which has 0's in between 1's, the number of 1's in H(n) is strictly less than that of n.www.ddhw.com

 

作者: QFT    时间: 2005-11-14 06:14
标题: 回复:上面的解法有漏洞,刚想到更好的方法

what's the meaning of "XOR" in the sentence "think of XOR of neighboring bits."
www.ddhw.com

 

作者: QFT    时间: 2005-11-14 06:29
标题: one counter-example

 If n is odd, H(n)=3n+1=2n+n+1, where 2n is to add a trailing zero to n. We can verify that the number of 1's in H(n) is strictly decreasing.
 
Seems not true;suppose n=1001001
 
then 2n = 10010010, n+1 = 1001010, and H(n) = 3n+1 = 11011100
so the number of 1's in H(n) increases in this case.
www.ddhw.com

 

作者: 流动的建筑    时间: 2005-11-14 07:41
标题: 回复:one counter-example

You are right. I should've considered it more carefully. But I believe the idea is correct.www.ddhw.com

In your case, we only need to apply H again.www.ddhw.com

A thorough proof probably needs much more work.www.ddhw.com

www.ddhw.com

 

作者: 流动的建筑    时间: 2005-11-14 09:12
标题: A complete proof

For any positive integer n, define the operations:

F: F(n)=3n+1, n is odd, and
G: G(n)=n/2, n is even.www.ddhw.com

Now define a new operation H,
For n even, n=(2^k)*m, where m is odd, H(n)=G(..G(n)..)=m, and
For n odd, H(n) = H(F(n)) = H(3n+1) = m, for some odd m.

Let's represent n in base 2, e.g., 43 ==> 101011.

For convenience, I will need two more functions:
B(n):= the number of bits of n. e.g. B(101011)=6.
W(n):= the trailing consecutive 1's in n, e.g. W(101011)=2, W(101000)=0.

1) When n is even, H(n) removes the trailing 0's from n. Clearly B(H(n)) < B(n).www.ddhw.com

2) When n is odd, there are W(n) trailing 1's in n. H(n) has the following properties:
2.1) If W(n) > 1, then B(H(n)) <= B(n), W(H(n))=W(n)-1;
2.2) If W(n)==1, then B(H(n)) < B(n).
In plain English, after each operation H, the number of bits will not increase, and the number of trailing 1's decrease by 1. When the number of trailing 1's is one, the next operation H will surely reduce the number of bits.

For any positive integer n, in limited steps, the number of bits will be reduced to 1. QED.

I thank QFT for pointing out my previous error.
www.ddhw.com

 

作者: ob    时间: 2005-11-14 20:48
标题: Surely deserve [@};-][@};-][@};-]

  Surely deserve





作者: yaluzangbu    时间: 2005-11-14 23:53
标题: 回复:A complete proof

2.1) If W(n) > 1, then B(H(n)) <= B(n)www.ddhw.com

It is wrong, e.g., 15 -> 23 -> 35.www.ddhw.com

 

作者: 流动的建筑    时间: 2005-11-15 01:34
标题: You're right. I give up.

  You're right. I give up.





作者: ob    时间: 2005-11-15 09:43
标题: Good Try![@};-][@};-][@};-]

  Good Try!









欢迎光临 珍珠湾ART (http://zzwav.com/) Powered by Discuz! X3