难度:+++
证明三角形中三条边的中点、三个高的垂足和垂心到各顶点的三个线段的中点在一个圆上。
三角形ABC中 D,E,F为中点,O为垂心, G为垂足,H为AO(垂心到A)的中点(见上图)。 只要证明 1) EFDG共园,这样垂足G在三个中点决定的园上,同理另两个垂足也在这个园上 2) EHFG共园,这样H(垂心到A的中点) 在这个园上,同理BO,CO的中点也在这个园上 证1) :只要证明
那个绿三角形和蓝三角形都是等腰三角形,所以 证2) 只要证明 EH//(AC上的垂线) ,EH与AC垂直, HG与BC垂 直,所 以
|
is a little out of place. Took me a while to realize the green triangle is isosceles. |
You mean the picture is not accurate or the two letters are little far from the points? Since I drew them in Paint, there is no measurement, I just drew them approximately. And writing letters would cover some part of a segment, so I have to redraw the lines after I put letters. |
九点圆可以被推广到空间内的某类四面体的12点共球,我给出了推广http://blog.sina.com.cn/mathchaser |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |