任取两个整数, 它们互素的概率是多少?
更准确一点,从 1,2,...,N 中任意选取 a,b, 当 N 趋于无穷大时,a,b 互素的概率的极限是多少?
设其概率为P。对正整数 k, a,b 的最大公约数是 k 的概率是 (1/k^2)*P。因此有 1 = (1 + 1/2^2 + ... + 1/k^2 + ...) * P = (pi^2/6) * P, 即 P = 6 / pi^2。
Interesting. So (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)..... = 6/pi^2 I wonder whether there is a direct proof of this equation. |
(1+1/2^2+1/3^3+...)((1-1/2^2)(1-1/3^2)...)=1 holds an d the proof is easy. |
欢迎光临 珍珠湾ART (http://zzwav.com/) | Powered by Discuz! X3 |