珍珠湾ART

标题: Find minimun number of points on the plane [打印本页]

作者: yma16    时间: 2005-9-10 19:28
标题: Find minimun number of points on the plane

such that:www.ddhw.com
1  They are vertices of concave polygons.
2  All the concave polygons have more than one inner angle with degree > 180. 
 
You can either show a picture or list the coordinates of the points.
 
If you are inetrested, you can change (2) to be
2'  All the concave polygons have exactly two inner angles with degree > 180. 
 
www.ddhw.com

 

作者: husonghu    时间: 2005-9-11 01:06
标题: 我想#2是对“由这些点构成的凹多边形的全体集合”而言,对吗?

  我想#2是对“由这些点构成的凹多边形的全体集合”而言,对吗?





作者: yma16    时间: 2005-9-11 07:04
标题: Yes.

  Yes.





作者: yma16    时间: 2005-9-11 07:19
标题: After this, please try 3, 4...

I think we can find a pattern about the minimum number of the points and how to draw the points.
www.ddhw.com

 

作者: husonghu    时间: 2005-9-11 08:54
标题: 你肯定此题有解吗?即便对于正好2内角>180,我都没有找到答案, .....

更不要说正好3内角、或4内角>180的情况了。如果有解。你能否给出
一个正好2内角>180的例子看看?也许我还没有理解你的题意。www.ddhw.com

 

作者: 乱弹    时间: 2005-9-11 17:56
标题: 没理解题意

好像是要指定一些凹多边形。否则,必然有四个点是凹多边形的顶点, 它们不满足条件2
www.ddhw.com

 

作者: fzy    时间: 2005-9-11 22:04
标题: 回复:Find minimun number of points on the plane

6个应该够了。一个大三角形里倒扣一个小三角形。www.ddhw.com
 
改过的题好像没有解。
www.ddhw.com

 

作者: yma16    时间: 2005-9-11 23:54
标题: What I mean is

each polygon uses all the point as its vertices.  It is not the subset.
www.ddhw.com

 

作者: yma16    时间: 2005-9-11 23:56
标题: guys and mms, could you try

(0,2), (-1, 1), (1,1), (-4,0), and (4,0).  It may work.
www.ddhw.com

 

作者: husonghu    时间: 2005-9-12 00:52
标题: 不行,连接(-4,0)(0,2)(-1,1)(1,1)(4,0),你只在(-1,1)得到内角>180

  不行,连接(-4,0)(0,2)(-1,1)(1,1)(4,0),你只在(-1,1)得到内角>180





作者: yma16    时间: 2005-9-12 03:21
标题: I have to try more. - eom

  I have to try more. - eom





作者: 乱弹    时间: 2005-9-12 04:09
标题: 你的感觉是正确的。 [@};-][@};-][@};-]

  你的感觉是正确的。





作者: yma16    时间: 2005-9-13 06:39
标题: How about 4 vertices of a square within

4 vertices of a larger square.  Like
.                      .
 
         .     .
         .     .
 www.ddhw.com
.                       .
 
You can get exactly 2 angles >180.  I could not get only one such angle.  Although you can get more than 2 such angles.  Try to reduce the number of points until we can't get 2 angles >180.
 
This is for (1) and (2), not (2').  FZY said (2') is impossible.  He also said 6 points (vertices of 2 triangles) are enough.  Please show a picture, someone.
www.ddhw.com

 





欢迎光临 珍珠湾ART (https://zzwav.com/) Powered by Discuz! X3